$\star t \star t \star t \star * * * * * * * * *$

 А इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.
"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"
"पुराने को छोड नये के तरफ" Jawaharlal Nehru
"Step Out From the Old to the New"

SP 16 (1980): Design Aids for Reinforced Concrete to IS 456:1978 [CED 2: Cement and Concrete]

"Knowledge is such a treasure which cannot be stolen"

BLANK PAGE

For Reinforced Concrete

DESIGN AIDS FOR

REINFORCED CONCRETE TO IS: 456-1978

As in the Original Standard, this Page is Intentionally Left Blank

Design Aids
 For Reinforced Concrete to IS : 456-1978

SP 16 : 1980

FIRST PUBLISHED SEPTEMBER 1980
ELEVENTH REPRINT MARCH 1999
(Incorporating Amendment No. 1)
(c) BUREAU OF INDIAN STANDARDS

UDC 624.012.45.04 (026)

PRICE Rs. 500.00

FOREWORD

Users of various civil engineering codes have been feeling the need for explanatory handbooks and other compilations based on Indian Standards. The need has been further emphasized in view of the publication of the National Building Code of India 1970 and its implementation. In 1972, the Department of Science and Technology set up an Expert Group on Housing and Construction Technology under the Chairmanship of Maj-Gen Harkirat Singh. This Group carried out in-depth studies in various areas of civil engineering and construction practices. During the preparation of the Fifth Five Year Plan in 1975, the Group was assigned the task of producing a Science and Technology plan for research, development and extension work in the sector of housing and construction technology. One of the items of this plan was the production of design handbooks, explanatory handbooks and design aids based on the National Building Code and various Indian Standards and other activities in the promotion of National Building Code. The Expert Group gave high priority to this item and on the recommendation of the Department of Science and Technology the Planning Commission approved the following two projects which were assigned to the Indian Standards Institution:
a) Development programme on Code implementation for building and civil engineering construction, and
b) Typification for industrial buildings.

A Special Committee for Implementation of Science and Technology Projects (SCIP) consisting of experts connected with different aspects (see page viii) was set up in 1974 to advise the ISI Directorate General in identification and for guiding the development of the work under the Chairmanship of Maj-Gen Harkirat Singh, Retired Engineer-in-Chief, Army Headquarters and formerly Adviser (Construction) Planning Commission, Government of India. The Committee has so far identified subjects for several explanatory handbooks/compilations covering appropriate Indian Standards/Codes/Specifications which include the following:

Functional Requirements of Buildings
Functional Requirements of Industrial Buildings
Summaries of Indian Standards for Building Materials
Building Construction Practices
Foundation of Buildings
Explanatory Handbook on Earthquake Resistant Design and Construction (IS : 1893 IS : 4326)
Design Aids for Reinforced Concrete to IS : 456-1978
Explanatory Handbook on Masonry Code
Commentary on Concrete Code (IS : 456)
Concrete Mixes
Concrete Reinforcement
Form Work
Timber Engineering
Steel Code (IS : 800)
Loading Code
Fire Safety
Prefabrication
Tall Buildings
Design of Industrial Steel Structures
Inspection of Different Items of Building Work
Bulk Storage Structures in Steel
Bulk Storage Structures in Concrete
Liquid Retaining Structures

Construction Safety Practices

Commentaries on Finalized Building Bye-laws
Concrete Industrial Structures
One of the explanatory handbooks identified is on IS : 456-1978 Code of practice for plain and reinforced concrete (third revision). This explanatory handbook which is under preparation would cover the basis/source of each clause; the interpretation of the clause and worked out examples to illustrate the application of the clauses. However, it was felt that some design aids would be of help in designing as a supplement to the explanatory handbook. The objective of these design aids is to reduce design time in the use of certain clauses in the Code for the design of beams, slabs and columns in general building structures.

For the preparation of the design aids a detailed examination of the following handbooks was made :
a) CP : $110:$ Part 2: 1972 Code of practice for the structural use of concrete : Part 2 Design charts for singly reinforced beams, doubly reinforced beams and rectangular columns. British Standards Institution.
b) ACI Publication SP-17(73) Design Handbook in accordance with the strength design methods of ACI 318-71, Volume 1 (Second Edition). 1973. American Concrete Institute.
c) Reynolds (Charles E) and Steadman (James C). Reinforced Concrete Designer's Handbook. 1974. Ed. 8. Cement and Concrete Association, UK.
d) Fintel (Mark), Ed. Handbook on Concrete Engineering. 1974. Published by Van Nostrand Reinhold Company, New York.

The charts and tables included in the design aids were selected after consultation with some users of the Code in India.

The design aids cover the following:
a) Material Strength and Stress-Strain Relationships;
b) Flexural Members (Limit State Design);
c) Compression Members (Limit State Design);
d) Shear and Torsion (Limit State Design);
e) Development Length and Anchorage (Limit State Design);
f) Working Stress Method;
g) Deflection Calculation; and
h) General Tables.

The format of these design aids is as follows:
a) Assumptions regarding material strength;
b) Explanation of the basis of preparation of individual sets of design aids as related to the appropriate clauses in the Code; and
c) Worked example illustrating the use of the design aids.

Some impurtant points to be noted in the use of the design aids are:
a) The design units are entirely in SI units as per the provisions of IS : 456-1978.
b) It is assumed that the user is well acquainted with the provisions of IS : 456-1978 before using these design aids.
c) Notations as per IS : 456-1978 are maintained here as far as possible.
d) Wherever the word 'Code' is used in this book, it refers to IS : 456-1978 Code of practice for plain and reinforced concrete (third revision).
e) Both charts and tables are given for flexural members. The charts can be used conveniently for preliminary design and for final design where greater accuracy is needed, tables may be used.
f) Design of columns is based on uniform distribution of steel on two faces or on four faces.
g) Charts and tables for flexural members do not take into consideration crack control and are meant for strength calculations only. Detailing rules given in the Code should be followed for crack control.
h) If the steel being used in the design has a strength which is slightly different from the one used in the Charts and Tables, the Chart or Table for the nearest value may be used and area of reinforcement thus obtained modified in proportion to the ratio of the strength of stcels.
j) In most of the charts and tables, colour identification is given on the right/left-hand corner along with other salient values to indicate the type of steel; in other charts/ tables salient values have been given.

These design aids have been prepared on the basis of work done by Shri P. Padmanabhan, Officer on Special Duty, ISI. Shri B. R. Narayanappa, Assistant Director, ISI was also associated with the work. The draft Handbook was circulated for review to Central Public Works Department, New Delhi; Cement Research Institute of India, New Delhi; Metallurgical and Engineering Consultants (India) Limited, Ranchi, Central Building Research Institute, Roorkee; Structural Engineering Research Centre, Madras; M/s C. R. Narayana Rao, Madras; and Shri K. K. Nambiar, Madras and the views received have been taken into consideration while finalizing the Design Aids.

SPECIAL COMMIITEE FOR IMPLEMENTATION OF SCIENCE AND TECHNOLOGY PROJECTS (SCIP)

Chairman

Maj-Gen Harkirat Singh W-51 Greater Kailash I, New Delhi 110048

[^0](Member Secrelury)

CONTENTS

Page
LIST OF TABLES IN THE EXPLANATORY TEXT x
LIST OF CHARTS xi
LIST OF TABLES xiv
SYMBOLS xvii
CONVERSKON FACTORS xix

1. MATERIAL STRENGTH AND STRESS-STRAIN RELATIONSHIPS 3
1.1 Grades of Concrete 3
1.2 Types and Grades of Reinforcement 3
1.3 Stress-strain Relationship for Concrete 4
1.4 Stress-strain Relationship for Steel 4
2. FLEXURAL MEMBERS 9
2.1 Assumptions 9
2.2 Maximum Depth of Neutral Axis 9
2.3 Rectangular Sections 9
2.3.1 Under-Reinforced Sections 10
2.3.2 Doubly Reinforced Sections 12
2.4 T-Sections 14
2.5 Control of Deflection 14
3. COMPRESSION MEMBERS 99
3.1 Axially Loaded Compression Members 99
3.2 Combined Axial Load and Uniaxial Bending 99
3.2.1 Assumptions 100
3.2.2 Stress Block Parameters when the Neutral Axis Lies 101 Outside the Section
3.2.3 Construction of Interaction Diagram 101
3.3 Compression Members Subject to Biaxial Bending 104
3.4 Slender Compression Members 106
4. SHEAR AND TORSION 175
4.1 Design Shear Strength of Concrete 175
4.2 Nominal Shear Stress 175
4.3 Shear Reinforcement 175
4.4 Torsion 175
5. DEVELOPMENT LENGTH AND ANCHORAGE 183
5.1 Development Length of Bars 183
5.2 Anchorage Value of Hooks and Bends 183
6. WORKING STRESS DESIGN 189
6.1 Flexural Members 189
6.1.1 Balanced Section 189
6.1.2 Under-Reinforced Section 189
6.1.3 Doubly Reinforced Section 190
6.2 Compression Members 190
6.3 Shear and Torsion 191
6.4 Development Length and Anchorage 191
7. DEFLECTION CALCULATION 213
7.1 Effective Moment of Inertia 213
7.2 Shrinkage and Creep Deflections 213
LIST OF TABLES IN THE EXPLANATORY TEXT
Table
A Salient Points on the Design Stress Strain Curve for Cold Worked Bars 6
B Values of $\frac{x_{\mathrm{u}, \max }}{d}$ for Different Grades of Steel 9
C Limiting Moment of Resistance and Reinforcement Index for Singly Reinforced Rectangular Sections 10
D Limiting Moment of Resistance Factor M_{u}, lim $/ b d^{\mathbf{2}}, \mathrm{N} / \mathrm{mm}^{\mathbf{2}}$ for Singly Reinforced Rectangular Sections 10
E Maximum Percentage of Tensile Reinforcement P_{i},lim for Singly Reinforced Rectangular Sections 10
F Stress in Compression Reinforcement, $f_{\mathrm{sc}} \mathrm{N} / \mathrm{mm}^{2}$ in Doubly Reinforced Beams with Cold Worked Bars 13
G Multiplying Factors for Use with Charts 19 and 20 13
H Stress Elock Parameters When the Neutral Axis Lies Outside the Section 101
I Additional Eccentricity for Slender Compression Members 106
J Maximum Shear Stress $\tau_{\epsilon \text {,max }}$ 175
K Moment of Resistance Factor $M / b d^{2}, N / m m^{2}$ for Balanced Rectangular Section 189
L Percentage of Tensile Reinforcement $p_{t, b a l}$ for Singly Reinforced Balanced Section 189
M Values of the Ratio $A_{\mathrm{sc}} / A_{\mathrm{st} 2}$ 190

LIST OF CHARTS

Chart

No.
Page
FLEXURE - Singly Reinforced Section

1	$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}, f_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$	$d=5$ to 30 cm	...	17
2	$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$	$d=30$ to 55 cm	...	18
3	$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$	$d=55$ to 80 cm	...	19
4	$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d=5$ to 30 cm	...	21
5	$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d=30$ to 55 cm	...	22
6	$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d=55$ to 80 cm	...	23
7	$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d=5$ to 30 cm		25
8	$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d=30$ to 55 cm	...	26
9	$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d=55$ to 80 cm	...	27
10	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}, f_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$	$d=5$ to 30 cm	...	29
11	$f_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$	$d=30$ to 55 cm	...	30
12	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$	$d=55$ to 80 cm	...	31
13	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d=5$ to 30 cm	...	33
14	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}, f_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d=30$ to 55 cm	...	34
15	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d=55$ to 80 cm	...	35
16	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d=5$ to 30 cm	...	37
17	$f_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d=30$ to 55 cm	...	38
18	$f_{\mathrm{ct}}=20 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d=55$ to 80 cm	...	39

FLEXURE - Doubly Reinforced Section

$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}, d-d^{\prime}=20$ to 50 cm41
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}, d-d^{\prime}=50$ to $80 \mathrm{~cm} \quad$... ... 42
CONTROL OF DEFLECTION
$21 \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$
$22 \quad f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$ 44
$23 f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$ 45

AXIAL COMPRESSION

24
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$
109
$25 f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$ 110
$26 f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$ 111

COMPRESSION WITH BENDING - Rectangular Section Reinforcement Distributed Equally on Two Sides
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.05 \quad \ldots \quad \ldots \quad 124$
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.10$ 125
$f_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$
$d^{\prime} \mid D=0.15$ 126
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0 \cdot 20 \quad$... ... 127
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.05 \quad$... ... 128
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.10 \quad$... ... 129
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.15 \quad$... ... 130
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.20 \quad$... $\quad . . \quad 131$
$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.05 \quad$..... .132
$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0 \cdot 10 \quad$... ... 133
$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$d^{\prime} / D=0.15 \quad$... ... 134
$f_{y}=500 \mathrm{~N} / \mathrm{min}^{2}$
$d^{\prime} \mid D=0.20 \quad$... ... 135

COMPRESSION WITH BENDING - Circular Section

$$
d^{\prime} \mid D=0.05
$$136

$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.10 \quad$... ... 137
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.15 \quad$... $\quad . . \quad 138$
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.20 \quad$... ... 139
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.05 \quad$... ... 140
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0 \cdot 10 \quad$... ... 141
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.15 \quad$... ... 142
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.20 \quad$... ... 143
$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.05 \quad$... ... 144
$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0 \cdot 10 \quad$... ... 145
$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.15 \quad$... ... 146
$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad d^{\prime} / D=0.20 \quad$..... .147
Values of $P_{u z}$ for Compression Members 148
Biaxial Bending in Compression Members 149
Slender Compression Members - Multiplying Factor k for ... 150 Additional Moments

> TENSION WITH BENDING - Rectangular Section Reinforcement Distributed Equally on Two Sides

66	$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.15$ and 0.20	\ldots	\ldots	151
67	$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.05$ and 0.10	\ldots	\ldots	152
68	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.05$	\ldots	\ldots	153
69	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.10$	\ldots	\ldots	154
70	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.15$	\ldots	\ldots	155
71	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.20$	\ldots	\ldots	156
72	$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.05$	\ldots	\ldots	157
73	$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.10$	\ldots	\ldots	158
74	$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.15$	\ldots	\ldots	159
75	$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.20$	\ldots	\ldots	160

TENSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Four Sides

76	$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} \mid D=0.05$ and 0.10	161
77	$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{8}$	$d^{\prime} \mid D=0.15$ and 0.20		...	162
78	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.05$	163
79	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} \mid D=0.10$	164
80	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} \mid D=0.15$	165
81	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} \mid D=0.20$	166
82	$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} \mid D=0.05$...		167
83	$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} \mid D=0.10$	168
84	$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} / D=0.15$..-	...	169
85	$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$d^{\prime} \mid D=0.20$	170
86	Axial Compression (Working Stress Design) $\sigma_{x}=130 \mathrm{~N} / \mathrm{mm}^{2} \ldots$				193
87	Axial Compression (Working Stress Design) $\sigma_{\infty}=190 \mathrm{~N} / \mathrm{mm}^{2}$				194
88	Moment of Inertia of T-Beams				215
89	Effective Moment of Inertia for Calculating Deflection			...	216
90	Percentage, Area and Spacing of Bars in Slabs			-	217
91	Effective Length of Columns - Frame Restrained Against Sway ...				218
92	Effective Length of Columns - Frame Without Restraint to Sway				219

LIST OF TABLES

Table
No.
Page
FLEXURE - Reinforcement Percentage, p_{t} for Singly Reinforced Sections

1	$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}$	\ldots	\ldots	47
2	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$	\ldots	\ldots	48
3	$f_{\text {ck }}=25 . \mathrm{N} / \mathrm{mm}^{2}$	\ldots	\ldots	49
4	$f_{\text {ck }}=30 \mathrm{~N} / \mathrm{mm}^{2}$	\ldots	\ldots	50

FLEXURE - Moment of Resistance of Slabs, kN.m Per Metre Width.
$f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=10.0 \mathrm{~cm} \quad \ldots \quad 51$
$6 \quad f_{c k}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=11.0 \mathrm{~cm}$ 51
$7 f_{c k}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=12.0 \mathrm{~cm}$ 52
$8 \quad f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $-13.0 \mathrm{~cm} \quad$... 52
$9 \quad f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2} . f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=14.0 \mathrm{~cm} \quad \ldots . \quad 53$
$10 \quad f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=15.0 \mathrm{~cm} \quad \ldots \quad 53$
$11 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=17.5 \mathrm{~cm} \quad$... 54
$12 f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=20.0 \mathrm{~cm} \quad \ldots .55$
$13 f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=22.5 \mathrm{~cm} \quad$... 56
$14 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=25.0 \mathrm{~cm} \quad \ldots .57$
$15 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=10.0 \mathrm{~cm} \quad \ldots .58$
$16 f_{\mathrm{ct}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=11.0 \mathrm{~cm} \quad \ldots .58$
$17 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=12.0 \mathrm{~cm} \quad \ldots .59$
$18 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=13.0 \mathrm{~cm} \quad \ldots .59$
$19 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} f_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Thcikness $=14.0 \mathrm{~cm} \quad \ldots .60$
$20 \quad f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=15.0 \mathrm{~cm} \quad . . . \quad 61$
$21 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=17.5 \mathrm{~cm} \quad \ldots .62$
$22 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=20.0 \mathrm{~cm} \quad \ldots 6$
$23 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=22.5 \mathrm{~cm} \quad$... 64
$24 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=25.0 \mathrm{~cm} \quad$... 65
$25 f_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=10.0 \mathrm{~cm} \quad . . . \quad 66$
$26 f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=11.0 \mathrm{~cm} \quad . . . \quad 66$
$27 f_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=12.0 \mathrm{~cm} \quad$... 67
$28 f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=13.0 \mathrm{~cm} \quad$... 67
$29 f_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=14.0 \mathrm{~cm} \quad \ldots . \quad 68$
$30 \quad f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=15.0 \mathrm{~cm} \quad \ldots \quad 68$
31 fck $=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=17.5 \mathrm{~cm} \quad$... 69
$32 f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=20 \% \mathrm{~cm} \quad . . \quad 70$
$33 f_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Thickness $=22.5 \mathrm{~cm} \quad$... 71
$34 f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness $=25.0 \mathrm{~cm} \quad$... 72

No.					Page
35	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	Thickness $=10.0 \mathrm{~cm}$...	73
36	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	Thickness $=11.0 \mathrm{~cm}$		73
37	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	Thickness $=12.0 \mathrm{~cm}$		74
38	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	Thickness $=13.0 \mathrm{~cm}$		74
39	$f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	Thickness $=14.0 \mathrm{~cm}$...	75
40	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	Thickness $=15.0 \mathrm{~cm}$		76
41	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	Thickness $=17.5 \mathrm{~cm}$		77
42	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	Thickness $=20.0 \mathrm{~cm}$...	78
43	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	Thickness -22.5 cm		79
44	$f_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$	Thickness $=25.0 \mathrm{~cm}$...	80

FLEXURE - Reinforcement Percentages for Doubly Reinforced Sections
$45 \quad f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$......$\quad 81$
$46 f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$... ... 82
$47 f_{\mathrm{ck}}=25 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad . . . \quad .$.
$48 f_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$... ... 84
$49 f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad$... ... 85
$50 \quad f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad$... ... 86
$51 \quad f_{c k}=25 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad$... ... 87
$52 f_{c k}=30 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad$..... .88
$53 f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad . . . \quad .$.
$f_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad$... ... 90
$f_{\text {ck }}=25 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}-500 \mathrm{~N} / \mathrm{mm}^{2} \quad . . . \quad . . \quad 91$
$f_{\text {ck }}=30 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad$... ... 92

> FLEXURE - Limiting Moment of Resistance Factor, $M_{v, l i m} / b_{w} d^{2}$ fak, for Singly Reinforced T-beams $/ \mathrm{mm}^{2}$
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \quad$... ... 93
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad$... ... 94
$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad$... ... 95
Slender Compression Members - Values of P_{b}... ... 171
Shear — Design Shear Strength of Concrete, $\tau_{c}, \mathrm{~N} / \mathrm{mm}^{2}$... ... 178
Shear - Vertical Stirrups 179
Shear - Bent-up Bars 179

DEVELOPMENT LENGTH

Plain Bars

184

65 Deformed bars, $f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$... ... 184
66 Deformed bars, $f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$... ... 185
67 Anchorage Value of Hooks and Bends
186

> WORKING STRESS METHOD — FLEXURE - Moment of Resistance Factor, $M / b d^{2}, N / \mathrm{mm}^{2}$ for Singly Reinforced Sections

68	$\sigma_{c b c}=5.0 \mathrm{~N} / \mathrm{mm}^{2}$	\ldots	..	195
69	$\sigma_{\mathrm{cbc}}=7.0 \mathrm{~N} / \mathrm{mm}^{2}$	\ldots	\ldots	196
70	$\sigma_{\mathrm{cbc}}=8.5 \mathrm{~N} / \mathrm{mm}^{2}$	\ldots	\cdots	197
71	$\sigma_{\text {cbc }}=10.0 \mathrm{~N} / \mathrm{mm}^{2}$	\ldots	..	198

WORKING STRESS DESIGN - FLEXURE - Reinforcement Percentages for Doubly Reinforced Sections

72	$\sigma_{\text {cbe }}=5.0 \mathrm{~N} / \mathrm{mm}^{2}$	$\sigma_{n}=140 \mathrm{~N} / \mathrm{mm}^{2}$	199
73	$\sigma_{\text {ctc }}=7.0 \mathrm{~N} / \mathrm{mm}^{2}$	$\sigma_{x}=140 \mathrm{~N} / \mathrm{mm}^{2}$	200
74	$\sigma_{\text {ccc }}=8.5 \mathrm{~N} / \mathrm{mm}^{2}$	$\sigma_{s t}=140 \mathrm{~N} / \mathrm{mm}^{2}$..0	...	201
75	$\sigma_{\text {ctc }}=10.0 \mathrm{~N} / \mathrm{mm}^{2}$	$\sigma_{R}=140 \mathrm{~N} / \mathrm{mm}^{2}$	202
76	$\sigma_{c c c}=5.0 \mathrm{~N} / \mathrm{mm}^{2}$	$\sigma_{n}=230 \mathrm{~N} / \mathrm{mm}^{2}$	203
77	$\alpha_{\text {cbe }}=7.0 \mathrm{~N} / \mathrm{mm}^{2}$	$\sigma_{\mathrm{st}}=230 \mathrm{~N} / \mathrm{mm}^{2}$	204
78	$0_{\text {ctec }}=8.5 \mathrm{~N} / \mathrm{mm}^{2}$	$a_{4 t}-230 \mathrm{~N} / \mathrm{mm}^{2}$	205
79	$\sigma_{\text {ctec }}=10.0 \mathrm{~N} / \mathrm{mm}^{2}$	$\sigma_{5 t}=230 \mathrm{~N} / \mathrm{mm}^{2}$...		206

WORKING STRESS METHOD - SHEAR
80 Permissible Shear Stress in Concrete $\boldsymbol{\tau}_{\mathrm{a}}, \mathrm{N} / \mathrm{mm}^{\mathbf{2}}$ 207
81 Vertical Stirrups 207
82 Bent-up Bars 208
WORKING STRESS METHOD - DEVELOPMENT LENGTH
83 Plain Bars 208
84 Deformed Bars $-\sigma_{\mathrm{at}}=230 \mathrm{~N} / \mathrm{mm}^{2}, \quad \sigma_{\mathrm{n}}=190 \mathrm{~N} / \mathrm{mm}^{2}$ 209
85 Deformed Bars - $\sigma_{x t}=275 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{x}=190 \mathrm{~N} / \mathrm{mm}^{2}$ 209
Moment of Inertia - Values of $b d^{2} / 12000$ 220
MOMENT OF INERTIA OF CRACKED SECTION-Values of $I_{f}\left(\frac{b d^{3}}{12}\right)$
$87 \quad d^{\prime} / d=0.05$ 221
$88 \quad d^{\prime} / d=0.10$ 222
$89 \quad d^{\prime} / d=0.15$ 223
$d^{\prime} / d=0.20$ 224
DEPTH OF NEUTRAL AXIS - Values of n/d by Elastic Theory
91
$d^{\prime} / d=0.05$ 225
$92 \quad d^{\prime} / d=0.10$ 226
$93 \quad d^{\prime} / d=0.15$ 227
$94 d^{\prime} / d=0.20$ 228
95 Areas of Given Numbers of Bars in cm^{2} 229
96 Areas of Bars at Given Spacings 230
97 Fixed End Moments for Prismatic Boams 231
98 Deflection Formulae for Prismatic Beams 232

SYMBOLS

Ac	= Area of concrete	$f_{\text {cr }}$	$=\underset{\text { (modulus of rupture) }}{\text { Fiength }}$ of
A_{B}	Area of steel in		concrete of rupture) of
A_{3}	- Area of steel in a column or in a singly reinforced beam or slab	f	$=$ Stress in steel
$A_{s c}$	= Area of compression steel	$f_{\text {sc }}$	$=$ Compressive stress in stee corresponding to a strain of
$A_{s v}$	Area of stirrups		0.002 (
A_{312}	- Area of additional tensile reinforcement	$f_{s t}$	=Stress in the reinforcemen nearest to the tension face of a
$a_{\text {cc }}$	$=$ Deflection due to creep		ember subjected to combined
$a_{\text {cs }}$	$=$ Deflection due to shrinkage		xial load and bending
${ }_{\text {cs }}$	= Breadth of beam or shorter dimensions of a rectangular column	f_{y} $f_{y d}$	$\begin{aligned} & =\text { Characteristic yield strength of } \\ & \text { steel } \\ & =\text { Design yield strength of steel } \end{aligned}$
$b_{\text {f }}$	$=$ Effective width of flangc in a T-beam	$\mathrm{I}_{\text {efr }}$	$=$ Effective moment of inertia
$b_{\text {w }}{ }_{\text {b }}$	$=$ Breadth of web in a T-bea $=$ Centre-to-centre distance	$\mathrm{I}_{\text {rr }}$	$=$ Moment of inertia of the gross section about centroidal axis neglecting reinforcement
	corner bars in the direction of width	$I_{\text {r }}$	$=$ Moment of inertia of cracked section
D	- Overall depth of beam or slab or diameter of column or large	$K_{\text {b }}$	exural stiffncss of beam
	ension in a rectangula	$K_{\text {c }}$	colum
	column or dimension of a rectangular column in the	k	Constant or coefficient or factor
	direction of bending	$L_{\text {d }}$	$=$ Development length of bar
$D_{r}$$d$$d^{\prime}, d^{\prime}$	= Thickness of flange in a T-beam	l	$=\underset{\text { beam }}{\text { Length of column or span of }}$
	$=$ distance of centroid of compression reinforcement from	$l_{\text {ex }}$	$=$ Effective length of a column, bending about $x x$-axis
	the extreme compression fibre of the concrete section	$l_{\text {ey }}$	$=$ Effective length of a column bending about $y y$-axis
d_{1}	$=$ Centre to centre distance between corner bars in the direction of depth	M	$=$ Maximum moment under service loads
$E_{\text {c }}$	$=$ Medulus of elasticity of concrete	$M_{\text {r }}$	= Cracking moment
E_{3}	$=$ Modulus of clasticity of steel	M_{u}	$=$ Design moment for limit state Design (factored moment)
	= Eccentricity with respect to major axis ($x x$-axis)	M_{u}	$=$ Limiting moment of resistance of
$e_{\text {ay }}$	$=$ Eccentricity with respect to minor axis (y y-axis)		a singly reinforced rectangular beam
${ }_{f}^{\text {emin }}$	- Minimum eccentricity	$M_{\text {ux }}$	$=$ Design moment about $x x$-axis
	mpressive	$M_{\text {uy }}$	$=$ Design moment about $y y$-axis
	the level of centroid of compression reinforcement	$M_{\text {ux1 }}$	$=$ Maxinum uniaxial moment capacity of the section with
$f_{\text {ck }}$	$=$ Characteristic compressive		axial load, bending about

$M_{\mathrm{uy} 1}=$	Maximum uniaxial moment
	capacity of the section with
	axial load, bending about
	$y y$-axis

$M_{e_{1}}=$ Equivalent bending moment
$M_{\mathrm{ug}}=$ Additional moment, $M_{\mathrm{u}}-M_{\mathrm{u}, \text { lim }}$ in doubly reinforced beams
$M_{\mathrm{u}, \mathrm{lim}, \mathrm{T}}=$ Limiting moment of resistance of a T-beam
$m \quad=$ Modular ratio
$P \quad=$ Axial load
$P_{b} \quad$ - Axial load corresponding to the condition of maximum compressive strain of 0.0035 in concrete and 0.002 in the outermost layer of tension steel in a compression member
$P_{u} \quad=$ Design axial load for limit state design (factored load)
$p \quad=$ Percentage of reinforcement
$p_{c}=$ Percentage of compression reinforcement, $100 A_{s e} / b d$
$p_{\mathrm{t}} \quad=$ Percentage of tension reinforcement, $100 A_{s t} / b d$
$p_{t 2} \quad=$ Additional percentage of tensile reinforcement in doubly reinforced beams, $100 A_{t_{2}} / b d$
$s_{v} \quad=$ Spacing of stirrups
$T_{u}=$ Torsional moment due to factored loads
$V \quad-$ Shear force
$V_{\mathbf{a}} \quad$ - Strength of shear reinforcement (working stress design)
$V_{u} \quad$ - Shear force due to factored loads
$V_{\mathrm{us}}=$ Strength of shear reinforcement (limit state design)
$x \quad=$ Depth of neutral axis at service loads
$x_{1}=$ Shorter dimension of the stirrup
$x_{u} \quad=$ Depth of neutral axis at the limit state of collapse
$x_{u, \max }=$ Maximum depth of neutral axis in limit state design
$y_{2} \quad=$ Distance from centroidal axis of gross section, neglecting reinforcement, to extreme fibre in tension
$y_{1} \quad=$ Longer dimension of stirrup
$Z \quad=$ Lever arm
$\alpha \quad=$ Angle
$\gamma r \quad=$ Partial safety factor for load
$\gamma_{m} \quad$ Partial safety factor for material strength
$\xi_{\text {cc }} \quad=$ Creep strain in concrete
$\sigma_{\text {cbe }}=$ Permissible stress in concrete in bending compression
$\sigma_{\infty} \quad=$ Permissible stress in concrete in direct compression
$\sigma_{3} \quad-$ Stress in steel bar
$\sigma_{\mathrm{xc}}=$ Permissible stress in steel in compression
$\sigma_{\Delta 1} \quad=$ Permissible stress in steel in tension
$\sigma_{\mathrm{sv}}=$ Permissible stress in shear reinforcement
Tv $=$ Nominal shear stress
Tbd $=$ Design bond stress
$\tau_{c} \quad-$ Shear stress in concrete
$\tau_{\text {vo }} \quad$ - Equivalent shear stress
$\tau_{\tau, \text { max }}=$ Maximum shear stress in concrete with shear reinforcement
$0 \quad=$ Creep coefficient
$\phi \quad-$ Diameter of bar

To Convert	into	Multiply by	Conversely Multiply by
(1)	(2)	(3)	(4)
Loads and Forces			
Newton	kilogram	$0 \cdot 1020$	$9 \cdot 807$
Kilonewton	Tonne	$0 \cdot 1020$	$9 \cdot 807$
Moments and Torques			
Newton metre	kilogram metre	$0 \cdot 1020$	$9 \cdot 807$
Kilonewton metre	Tonne metre	0.1020	$9 \cdot 807$
Stresses			
Newton per mm	kilogram per mm ${ }^{2}$	$0 \cdot 1020$	$9 \cdot 807$
Newton per mm	kilogram per cm^{2}	$10 \cdot 20$	0.0981

MATERIAL STRENGTH AND STRESS-STRAIN RELATIONSHIPS

As in the Original Standard, this Page is Intentionally Left Blank

1. MATERIAL STRENGTHS AND STRESS-STRAIN RELATIONSHIPS

1.1 GRADES OF CONCRETE

The following six grades of concrete can be used for reinforced concrete work as specified in Table 2 of the Code (IS : 4561978*):

M 15, M 20, M 25, M 30, M 35 and M 40 .

The number in the grade designation refers to the characteristic compressive strength, $f_{\text {ck, }}$ of 15 cm cubes at 28 days, expressed in $\mathrm{N} / \mathrm{mm}^{2}$; the characteristic strength being defined as the strength below which not more than 5 percent of the test results are expected to fall.

* Code of practice for plain and reinforced concrete (third revision).
1.1.1 Generally, Grades M 15 and M 20 are used for flexural members. Charts for flexural members and tables for slabs are, therefore, given for these two grades only. However, tables for design of flexural members are given for Grades M 15, M 20, M 25 and M 30.

1.1.2 The charts for compression members

 are applicable to all grades of concrete.
1.2 TYPES AND GRADES OF REINFORCEMENT BARS

The types of steel permitted for use as reinforcement bars in 4.6 of the Code and their characteristic strengths (specified minimum yield stress or 0.2 percent proof stress) are as follows:

Type of Steel	Indian Standard	Yield Stress or 0.2 Percent Proof Stress
Mild steel (plain bars)	IS : 432 (Part I)-1966*	$26 \mathrm{kgf} / \mathrm{mm}^{2}$ for bars up to 20 mm dia
Mild steel (hot-rolled deformed bars)	IS : 1139-1966 \dagger \}	$24 \mathrm{kgf} / \mathrm{mm}^{2}$ for bars over 20 mm dia
Medium tensile steel (plain bars)	IS : 432 (Part I)-1966*	$36 \mathrm{kgf} / \mathrm{mm}^{2}$ for bars up to 20 mm dia $34.5 \mathrm{kgf} / \mathrm{mm}^{2}$ for bars over
Medium tensile steel (hotrolled deformed bars)	IS : 1139-1966 \dagger \}	20 mm dia up to 40 mm dia $33 \mathrm{kgf} / \mathrm{mm}^{2}$ for bars over 40 mm dia
High yield strength steel (hotrolled deformed bars)	IS : 1139-1966 \dagger	$42.5 \mathrm{kgf} / \mathrm{mm}^{2}$ for all sizes
High yield strength steel (cold-twisted deformed bars)	$\text { IS : 1786-1979 } \ddagger\}$	$415 \mathrm{~N} / \mathrm{mm}^{2}$ for all bar sizes $500 \mathrm{~N} / \mathrm{mm}^{2}$ for all bar sizes
Hard-drawn steel wire fabric	IS : $1566-1967$ § and IS : 432 (Part II)-1966॥	$49 \mathrm{kgf} / \mathrm{mm}^{2}$

Note-SI units have been used in IS: 1786-1979\#; in other Indian Standards, SI units will be adopted in their next revisions.
*Specification for mild steel and medium tensile steel bars and hard-drawn steel wire for concrete reinforcement: Part I Mild steel and medium tensile steel bars (second revision).
\dagger Specification for hot rolled mild steel, medium tensile steel and high yield strength steel deformed bars for concrete reinforcement (revised).
\ddagger Specification for cold-worked steel high strength deformed bars for concrete reinforcement (second revision)

8Specification for hard-drawn steel wire fabric for concrete reinforcement (first revision).
||Specification for mild steel and medium tensile steel bars and hard-drawn steel wire for concrete reinforcement: Part II Hard drawn steel wire (second revision).

Taking the above values into consideration, most of the charts and tables have been prepared for three grades of steel having characteristic strength f_{y} equal to $250 \mathrm{~N} / \mathrm{mm}^{2}$, $415 \mathrm{~N} / \mathrm{mm}^{2}$ and $500 \mathrm{~N} / \mathrm{mm}^{2}$.
1.2.1 If the steel being used in a design has a strength which is slightly different from the above values, the chart or table for the nearest value may be used and the area of reinforcement thus obtained be modified in proportion to the ratio of the strengths.
1.2.2 Five values of f_{y} (including the value for hard-drawn steel wire fabric) have been included in the tables for singly reinforced sections.

1.3 STRESS-STRAIN RELATIONSHIP FOR CONCRETE

The Code permits the use of any appropriate curve for the relationship between the compressive stress and strain distribution in concrete, subject to the condition that it results in the prediction of strength in substantial agreement with test results [37.1(c) of the Code]. An acceptable stress-strain curve (see Fig. 1) given in Fig. 20 of the Code will form the basis for the design aids in this publication. The compressive strength of concrete in the structure is assumed to be $0.67 \mathrm{f}_{\mathrm{ck}}$. With a value of 1.5 for the partial safety factor γ_{m} for material strength (35.4.2.1 of the Code), the maximum compressive stress in concrete for design purpose is $0.446 f_{\mathrm{ck}}$ (see Fig. 1).

1.4 STRESS-STRAIN RELATIONSHIP FOR STEEL

The modulus of elasticity of steel, E_{s}, is taken as $200000 \mathrm{~N} / \mathrm{mm}^{2}$ (4.6.2 of the Code). This value is applicable to all types of reinforcing steels.

The design yield stress (or 0.2 percent proof stress) of steel is equal to $f_{y} / \gamma_{\mathrm{m}}$. With a value of $1 \cdot 15$ for γ_{m} (35.4.2.1 of the Code), the design yield stress f_{y} becomes $0.87 f_{y}$. The stress-strain relationship for steel in tension and compression is assumed to be the same.

For mild steel, the stress is proportional to strain up to yield point and thereafter the strain increases at constant stress (see Fig. 2). For cold-worked bars, the stress-strain relationship given in Fig. 22 of the Code will

Fig. 1 Design Stress-Strain Curve for Concrete

Fig. 2 Stress-Strain Curve for Mild Steel
be adopted. According to this, the stress is proportional to strain up to a stress of $0.8 f_{y}$. Thereafter, the stress-strain curve is defined as given below:

Stress	Inelastic strain
$0.80 f_{y}$	Nil
$0.85 f_{y}$	0.0001
$0.90 f_{y}$	0.0003
$0.95 f_{y}$	0.0007
$0.975 f_{y}$	0.0010
$1.0 f_{y}$	0.0020

The stress-strain curve for design purposes is obtained by substituting $f_{y d}$ for f_{y} in the above. For two grades of cold-worked bars with 0.2 percent proof stress values of $415 \mathrm{~N} / \mathrm{mm}^{2}$ and $500 \mathrm{~N} / \mathrm{mm}^{2}$ respectively, the values of total strains and design stresses corresponding to the points defined above are given in Table A (see page 6). The stressstrain curves for these two grades of coldworked bars have been plotted in Fig. 3.

Fig. 3 Stress-Strain Curves for Cold-Worked Steels

TABLE \wedge SALIENT POINTS ON THE DESIGN STRESS-STRAIN CURVE FOR COLD-WORKED BARS

(Clarse 1.4)

Stress Level	$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$		$f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$	
(1)	Strain (2)	Stress (3) $\mathrm{N} / \mathrm{mm}^{2}$	Strain (4)	Stress (5) $\mathrm{N} / \mathrm{mm}^{2}$
$0.80 f_{\text {yd }}$	0.00144	288.7.	0.00174	$347 \cdot 8$
$0.85 f_{\text {yd }}$	0.00163	$306 \cdot 7$	0.00195	$369 \cdot 6$
$0.90 f_{\text {yd }}$	0.00192	$324 \cdot 8$	0.00226	$391 \cdot 3$
$0.95 f_{\text {yd }}$	0.00241	$342 \cdot 8$	0.00277	$413 \cdot 0$
$0.975 f_{y d}$	0.00276	$351 \cdot 8$	0.00312	$423 \cdot 9$
$1.0 f_{\mathrm{yd}}$	0.00380	360.9	0.00417	$434 \cdot 8$

FLEXURAL MEMBERS

As in the Original Standard, this Page is Intentionally Left Blank

2. FLEXURAL MEMBERS

2.1 ASSUMPTIONS

The basic assumptions in the design of flexural members for the limit state of collapse are given below (see 37.1 of the Code):
a) Plane sections normal to the axis of the member remain plane after bending. This means that the strain at any point on the cross section is directly proportional to the distance from the neutral axis.
b) The maximum strain in concrete at the outermost compression fibre is 0.0035.
c) The design stress-strain relationship for concrete is taken as indicated in Fig. 1.
d) The tensile strength of concrete is ignored.
e) The design stresses in reinforcement are derived from the strains using the stress-strain relationships given in Fig. 2 and 3.
f) The strain in the tension reinforcement is to be not less than

$$
\frac{0.87 f_{y}}{E_{3}}+0.002
$$

This assumption is intended to ensure ductile failure, that is, the tensile reinforcement has to undergo a certain degree of inelastic deformation before the concrete fails in compression.

2.2 MAXIMUM DEPTH OF NEUTRAL AXIS

Assumptions (b) and (f) govern the maximum depth of neutral axis in flexural members. The strain distribution across a member corresponding to those limiting conditions is shown in Fig. 4. The maximum depth of neutral axis x_{u}, max is obtained directly from the strain diagram by considering similar triangles.

$$
\frac{x_{u, \max }}{d}=\frac{0.0035}{\left(0.0055+0.87 f_{y} / E_{0}\right)}
$$

The values of $\frac{x_{u, \text { max }}}{d}$ for three grades of reinforcing steel are given in Table B.

TABLE B VALUES OF $\frac{x_{\mathrm{u}, \max }}{d}$ FOR DIFFERENT GRADES OF STEEL.
(Clause 2.2)

$f_{y}, \mathrm{~N} / \mathrm{mm}^{8}$	250	415	500
$\frac{x_{\mathrm{y}, \mathrm{max}}}{d}$	0.531	0.479	0.456

2.3 RECTANGULAR SECTIONS

The compressive stress block for concrete is represented by the design stress-strain curve as in Fig. 1. It is. seen from this stress block (see Fig. 4) that the centroid of compressive force in a rectangular soction lies

Fig. 4 Singly Reinporcsd Sbction
at a distance of $0.416 x_{u}$ (which has been rounded off to $0.42 x_{u}$ in the code) from the extreme compression fibre; and the total force of compression is $0.36 f_{c k} b x_{u}$. The lever arm, that is, the distance between the centroid of compressive force and centroid of tensile force is equal to ($d-0.416 x_{u}$). Hence the upper limit for the moment of resistance of a singly reinforced rectangular section is given by the following equation:

$$
\begin{aligned}
M_{\mathrm{u}, \mathrm{lim}}= & 0.36 f_{\text {ck }} b x_{\mathrm{u}, \max } \\
& \times\left(d-0.416 x_{\mathrm{u}, \text { max }}\right)
\end{aligned}
$$

Substituting for $x_{\mathrm{u}, \text { max }}$ from Table B and transposing $f_{\text {ck }} b d^{2}$, we get the values of the limiting moment of resistance factors for singly reinforced rectangular beams and slabs. These values are given in Table C. The tensile reinforcement percentage, $p_{t, l i m}$ corresponding to the limiting moment of resistance is obtained by equating the forces of tension and compression.

$$
\frac{p_{t, \lim } b d\left(0.87 f_{y}\right)}{100}=0.36 f_{c \mathrm{ck}} b x_{\mathrm{u}, \max }
$$

Substituting for $x_{u, \max }$ from Table B, we get the values of p_{t}, lim $f_{\mathrm{y}} / f_{\mathrm{ck}}$ as given in Table C .

TABLE C LIMITING MOMENT OF RESISTANCE AND REINFORCEMENT INDEX FOR SINGLY REINFORCED RECTANGULAR SECTIONS
(Clause 2.3)

$f_{y}, \mathrm{~N} / \mathrm{mm}^{2}$	250	415	500
$M_{u, 1 \mathrm{lim}}$	0.149	0.138	0.133
$f_{\text {ck }} b d^{-}$			
$\frac{p_{t, 1 \mathrm{lim}} f_{y}}{f_{c k}}$	21.97	19.82	18.87

The values of the limiting moment of resistance factor $M_{u} / b d^{2}$ for different grades of concrete and steel are given in Table D. The corresponding percentages of reinforcements are given in Table E. These are the maximum permissible percentages for singly reinforced sections.

TABLE E MAXIMUM PERCENTAGE OF TENSILE REINFORCEMENT $p_{t, h m}$ FOR SINGLY REINFORCED RECTANGULAR SECTIONS
(Clause 2.3)

$f_{\text {ck, }}$,	$f_{y}, \mathrm{~N} / \mathrm{mm}^{2}$		
$\mathrm{~N} / \mathrm{mm}^{2}$			
	250	415	500
15	1.32	0.72	0.57
20	1.76	0.96	0.76
25	2.20	1.19	0.94
30	2.64	$\mathbf{1 . 4 3}$	1.13

2.3.1 Under-Reinforced Sections

Under-reinforced section means a singly reinforced section with reinforcement percentage not exceeding the appropriate value given in Table E. For such sections, the depth of neutral axis x_{u} will be smaller than $x_{u, \max }$. The strain in steel at the limit state of collapse will, therefore, be more than $\frac{0.87 f_{y}}{E_{\mathrm{a}}}+0.002$ and, the design stress in steel will be 0.87 fy . The depth of neutral axis is obtained by equating the forces of tension and compression.

$$
\begin{aligned}
& \frac{p_{t} b d}{100}\left(0.87 f_{y}\right)=0.36 f_{c k} b x_{u} \\
& \frac{x_{u}}{d}=\binom{p_{t}}{100} \frac{0.87 f_{y}}{0.36 f_{c k}}
\end{aligned}
$$

The moment of resistance of the section is equal to the product of the tensile force and the lever arm.

$$
\begin{aligned}
M_{\mathrm{u}} & =\frac{p_{\mathrm{t}} b d}{100}\left(0.87 f_{\mathrm{y}}\right)\left(d-0.416 x_{\mathrm{u}}\right) \\
& =0.87 f_{\mathrm{y}}\left(\frac{p_{\mathrm{t}}}{100}\right)\left(1-0.416 \frac{x_{\mathrm{u}}}{d}\right) b d^{2}
\end{aligned}
$$

Substituting for $\frac{x_{\mathrm{u}}}{d}$ we get

$$
\begin{aligned}
M_{\mathrm{u}}= & 0.87 f_{\mathrm{y}}\left(\frac{p_{\mathrm{t}}}{100}\right) \\
& \times\left[1-1.005 \frac{f_{\mathrm{y}}}{f_{\mathrm{ck}}}\left(\frac{p_{\mathrm{t}}}{100}\right)\right] b d^{\mathrm{y}}
\end{aligned}
$$

2.3.1.1 Charts 1 to 18 have been prepared by assigning different values to M_{v} / b and plotting d versus p_{1}. The moment values in the charts are in units of $\mathrm{kN} . \mathrm{m}$ per metre width. Charts are given for three grades of steel and two grades of concrete, namely M 15 and M 20 , which are most commonly used for flexural members. Tables 1 to 4 cover a wider range, that is, five values of f_{y} and four grades of concrete up to M 30 . In these tables, the values of percentage of reinforcement p_{t} have been tabulated against $M_{u} / b d^{2}$.
2.3.1.2 The moment of resistance of slabs, with bars of different diameters and spacings are given in Tables 5 to 44. Tables are given for concrete grades M 15 and M 20, with two grades of steel. Ten different thicknesses ranging from 10 cm to 25 cm , are included. These tables take into account 25.5.2.2 of the Code, that is, the maximum bar diameter does not exceed one-eighth the thickness of the slab. Clear cover for reinforcement has been taken as 15 mm or the bar diameter, whichever is greater [see 25.4.1(d) of the Code]. In these tables, the zeros at the top right hand corner indicate the region where the reinforcement percentage would exceed $p_{t, l i m}$; and the zeros at the lower left hand corner indicate the region where the reinforcement is less than the minimum according to 25.5.2.1 of the Code.

Example 1 Singly Reinforced Beam

Determine the main tension reiniorcement required for a rectangular beam section with the following data:

Size of beam	$30 \times 60 \mathrm{~cm}$
Concrete mix	M 15
Characteristic strength of reinforcement *Factored moment	$415 \mathrm{~N} / \mathrm{mm}^{2}$
	$170 \mathrm{kN} . \mathrm{m}$

-Assuming 25 mm dia bars with 25 mm clear cover,
Effective depth $=60-2.5-\frac{2.5}{2}=56.25 \mathrm{~cm}$
From Table D, for $f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$ and $f_{c k}=15 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
M_{u, \lim / b d^{2}} & =2.07 \mathrm{~N} / \mathrm{mm}^{2} \\
& =\frac{2.07}{1090} \times(1000)^{2} \\
& =2.07 \times 10^{2} \mathrm{kN} / \mathrm{m}^{2} \\
\therefore \quad M_{a, \mu m} & =2.07 \times 10^{2} b d^{2} \\
& =2.07 \times 10^{2} \times \frac{30}{100} \times\left(\frac{56.25}{100}\right)^{2} \\
& =196.5 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

Actual moment of $170 \mathrm{kN} . \mathrm{m}$ is less than $M_{0,1, m}$. The section is therefore to be designed as a singly reinforced (under-reinforced) rectangular section.

Mithod of Rbfrrring to Flexure Chart

For referring to Chart, we need the value of moment per metre width.

$$
M_{\mathrm{u}} / b=\frac{170}{0 \cdot 3}=567 \mathrm{kN} . \mathrm{m} \text { per metre width. }
$$

[^1]Reforring to Chart 6 , corresponding to
$M_{u} / b=567 \mathrm{kN} . \mathrm{m}$ and $d=56.25 \mathrm{~cm}$,
Percentage of steel $p_{t}=\frac{100 A_{3}}{b d}=0.6$
$\therefore A_{3}=\frac{0.6 \mathrm{bd}}{100}=\frac{0.6 \times 30 \times 56.25}{100}=10.1 \mathrm{~cm}^{2}$

Method of Referring to Tables

For referring to Tables, we need the value of $\frac{M_{u}}{b d^{2}}$

$$
\begin{aligned}
\frac{M_{\mathrm{u}}}{b d^{2}} & =-\frac{170 \times 10^{6}}{30 \times 56.25 \times 56.25 \times 10^{3}} \\
& =1.79 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

From Table 1,
Percentage of reinforcement, $p_{\mathrm{t}}=0.594$
$\therefore A_{s}=\frac{0.594 \times 30 \times 56.25}{100}=10.02 \mathrm{~cm}^{2}$

Example 2 Slab

Determine the main reinforcement required for a slab with the following data: Factored moment
9.60 kN .m per metro width
Depth of slab
10 cm
M 15
Characteristic strength
a) $415 \mathrm{~N} / \mathrm{mm}^{2}$
of reinforcement
b) $250 \mathrm{~N} / \mathrm{mm}^{2}$

Method of Referring to Tables for Slabs

Referring to Table 15 (for $f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$), directly we get the following reinforcement for a moment of resistance of $9.6 \mathrm{kN} . \mathrm{m}$ per metre width:

8 mm dia at 13 cm spacing
or 10 mm dia at 20 cm spacing
Reinforcement given in the tables is based on a cover of 15 mm or bar diameter whichever is greater.

Method of Referring to Flexure Chart

Assume 10 mm dia bars with 15 mm cover,

$$
d=10-1 \cdot 5-\frac{1 \cdot 0}{2}=8 \mathrm{~cm}
$$

a) For $f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$

From Table $\mathrm{D}, M_{\mathrm{u}, \mathrm{lim}} / b d^{2}=2.07 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
\therefore M_{\mathrm{u}, \mathrm{Hm}} & =2.07 \times 10^{3} \times \frac{100}{100} \times\left(\frac{8}{100}\right)^{2} \\
& =13.25 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

Actual bending moment of $9.60 \mathrm{kN} . \mathrm{m}$ is less than the limiting bending moment.

Referring to Chart 4, reinforcement percentage, $p_{t}=0.475$
Referring to Chart 90 , provide
8 mm dia at 13 cm spacing
or 10 mm dia at 20 cm spacing.
Alternately,

$$
A_{s}=0.475 \times 100 \times \frac{\delta}{100}=3.8 \mathrm{~cm}^{2} \text { per }
$$

metre width.
From Table 96, we get the same reinforcement as before.
b) For $f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$

From Table $\mathrm{D}, M_{\mathrm{u}, \mathrm{lim}} / b d^{2}=2.24 \mathrm{~N} / \mathrm{mm}^{2}$
$\begin{aligned} M_{\mathrm{u}, \text { lim }} & =2.24 \times 10^{3} \times 1 \times\left(\frac{8}{100}\right)^{2} \\ & =14.336 \mathrm{kNm}\end{aligned}$
$=14.336 \mathrm{kN} . \mathrm{m}$
Actual bending moment of $9.6 \mathrm{kN} . \mathrm{m}$ is less than the limiting bending moment.
Referring to Chart 1, reinforcement percentage, $p_{\mathrm{t}}=0.78$
Referring to Chart 90 , provide 10 mm dia at 13 cm spacing.
2.3.2 Doubly Reinforced Sections - Doubly reinforced sections are generally adopted when the dimensions of the beam have been predetermined from other considerations and the design moment exceeds the moment of resistance of a singly reinforced section. The additional moment of resistance needed is obtained by providing compression reinforcement and additional tensile reinforcement. The moment of resistance of a doubly reinforced section is thus the sum of the limiting moment of resistance $M_{u, \text { lim }}$ of a singly reinforced section and the additional moment of resistance $M_{u_{2}}$. Given the values of M_{u} which is greater than $M_{u, l i m}$, the value of $M_{u_{2}}$ can be calculated.

$$
M_{u 2}=M_{u}-M_{u, l i \mathrm{lim}}
$$

The lever arm for the additional moment of resistance is equal to the distance between centroids of tension reinforcement and compression reinforcement, that is ($d-d^{\prime}$) where d^{\prime} is the distance from the extreme compression fibre to the centroid of compression reinforcement. Therefore, considering the moment of resistance due to the additional tensile rejnforcement and the compression reinforcement we get the following:

$$
M_{\mathrm{uz}_{2}}=A_{\mathrm{st}}\left(0.87 f_{y}\right)\left(d-d^{\prime}\right)
$$

also, $M_{u_{2}}=A_{x c}\left(f_{c c}-f_{c c}\right)\left(d-d^{\prime}\right)$
where
$A_{s t 2}$ is the area of additional tensile reinforcement,
$A_{x c}$ is the area of compression reinforcement,
$f_{s c}$ is the stress in compression reinforcement, and
f_{cc} is the compressive stress in concrete at the level of the centroid of compression reinforcement.
Since the additional tensile force is balanced by the additional compressive force,

$$
A_{\mathrm{sc}}\left(f_{\mathrm{sc}}-f_{\mathrm{cc}}\right)=A_{\mathrm{st} 2}\left(0.87 f_{y}\right)
$$

Any two of the above three equations may be used for finding $A_{\mathrm{st} 2}$ and A_{sc}. The total tensile reinforcement $A_{\text {st }}$ is given by,

$$
A_{\mathrm{st}}=p_{\mathrm{t}, \mathrm{lim}} \frac{b d}{100}+A_{\mathrm{st} 2}
$$

It will be noticed that we need the values of $f_{s c}$ and $f_{c c}$ before we can calculate $A_{s c}$. The approach given here is meant for design of sections and not for analysing a given section. The depth of neutral axis is, therefore, taken as equal to $x_{u, \max }$. As shown in Fig. 5, strain at the level of the compression reinforcement will be equal to $0.0035\left(1-\frac{d^{\prime}}{x_{u}, \max }\right)$

STRAIN DIAGRAM
Fig. 5 Doubly Reinforced Section

For values of d^{\prime} / d up to $0 \cdot 2, f_{c c}$ is equal to 0.446 fck ; and for mild steel reinforcement f_{sc} would be equal to the design yield stress of 0.87 fy . When the reinforcement is coldworked bars, the design stress in compression reinforcement $f_{\text {se }}$ for different values of d^{\prime} / d up to 0.2 will be as given in Table F .

TABLE F STRESS IN COMPRESSION REINFORCEMENT $f_{s c}, \mathrm{~N} / \mathrm{mm}^{2}$ IN DOUBLY REINFORCED BEAMS WITH COLDWORKED BARS (Clause 2.3 2)				
f_{y},	d^{\prime} / d			
$\mathrm{N} / \mathrm{mm}^{\text {a }}$				0.
415	355	353	- 342	329
500	424	412	395	370

2.3.2.1 A_{st2} has been plotted against $\left(d-d^{\prime}\right)$ for different values of $M_{\mathrm{u}_{2}}$ in Charts 19 and 20. These charts have been prepared for $f_{\mathrm{s}}=217.5 \mathrm{~N} / \mathrm{mm}^{2}$ and it is directly applicable. for mild steel reinforcement with yield stress of $250 \mathrm{~N} / \mathrm{mm}^{2}$. Values of $A_{\text {st }}$ for other grades of steel and also the values of A_{sc} can be obtained by multiplying the value read from the chart by the factors given in Table G. The multiplying factors for A_{sc}, given in this Table, are based on a value of $f_{c c}$ corresponding to concrete grade M 20, but it can be used for all grades of concrete with little error.

TABLE G MULTIPLYING FACTORS FOR USE WITH CHARTS 19 AND 20
'Clause 2.3.2.1)

f, $\mathrm{N}, \mathrm{mm}^{2}$	FACTOR FOR	FACTOR FOR			$A_{\text {sc }}$ FOR d^{\prime} / d
	$A_{\text {st2 }}$	0.05	0.10	0.15	0.20
250	1.00	1.04	1.04	1.04	1.04
415	0.60	0.63	0.63	0.65	0.68
500	0.50	0.52	0.54	0.56	0.60

2.3.2.2 The expression for the moment of resistance of a doubly reinforced section may also be written in the following manner:

$$
\begin{aligned}
& M_{\mathrm{u}}=M_{\mathrm{u}, \lim }+\frac{p_{\mathrm{t}_{2}} b d}{100}\left(0.87 f_{\mathrm{y}}\right)\left(d-d^{\prime}\right) \\
& \frac{M_{\mathrm{u}}}{b d^{2}}=\frac{M_{\mathrm{u}, \mathrm{lim}}}{b d^{2}}+\frac{p_{\mathrm{t}_{2}}}{100}\left(0.87 f_{\mathrm{y}}\right)\left(1-\frac{d^{\prime}}{d}\right)
\end{aligned}
$$

where
p_{12} is the additional percentage of tensile reinforcement.

$$
\begin{aligned}
& p_{\mathrm{t}}=p_{\mathrm{t}, \mathrm{im}}+p_{\mathrm{t} 2} \\
& p_{\mathrm{c}}=p_{\mathrm{t}_{2}}\left[\frac{0.87 f_{\mathrm{y}}}{f_{\mathrm{sc}}-f_{\mathrm{cc}}}\right]
\end{aligned}
$$

The values of p_{t} and p_{c} for four values of d^{\prime} / d up to 0.2 have been tabulated against $M_{u} / b d^{2}$ in Tables 45 to 56 . Tables are given for three grades of steel and four grades of concrete.

Example 3 Doubly Reinforced Beam

Determine the main reinforcements required for a rectangular beam section with the following data:

Size of beam	$30 \times 60 \mathrm{~cm}$
Concrete mix Characteristic strength of reinforcement	M 15 Factored moment

Assuming 25 mm dia bars with 25 mm clear cover,

$$
d=60-2.5-\frac{2.5}{2}=56.25 \mathrm{~cm}
$$

From Table D, for $f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$ and $f_{\text {ck }}=15 \mathrm{~N} / \mathrm{mm}^{2}$
$M_{\nu, 1 \mathrm{im}} / b d^{2}=2.07 \mathrm{~N} / \mathrm{mm}^{2}=2.07 \times 10^{3} \mathrm{kN} / \mathrm{m}^{2}$
$\therefore M_{u, \lim }=2.07 \times 10^{3} b d^{2}$

$$
=2.07 \times 10^{3} \times \frac{30}{100} \times \frac{56.25}{100} \times \frac{56.25}{100^{-}}
$$

$$
=196.5 \mathrm{kN} \cdot \mathrm{~m}
$$

Actual moment of $320 \mathrm{kN} . \mathrm{m}$ is greater than M_{u},lim
$\therefore \quad$ The section is to be designed as a doubly reinforced section.

Reinforcement from Tables

$$
\begin{aligned}
& \frac{M_{\mathrm{u}}}{b d^{2}}=\frac{320}{0.3 \times(0.5625)^{2} \times 10^{3}}=3.37 \mathrm{~N} / \mathrm{mm}^{2} \\
& d^{\prime} / d=\left(\frac{2.5+1.25}{56.25}\right)=0.07
\end{aligned}
$$

Next higher value of $d^{\prime} / d=0.1$ will be used for referring to Tables.

Referring to Table 49 corresponding to

$$
M_{\mathrm{u}} / b d^{2}=3.37 \text { and } \frac{d^{\prime}}{d}=0.1
$$

$$
p_{t}=1.117, p_{c}=0.418
$$

$\therefore \quad A_{\mathrm{st}}=18.85 \mathrm{~cm}^{2}, A_{\mathrm{sc}}=7.05 \mathrm{~cm}^{2}$

Reinforcement from Charts

$$
\begin{aligned}
& \left(d-d^{\prime}\right)=(56.25-3.75)=52.5 \mathrm{~cm} \\
& M_{u_{2}}=(320-196.5)=123.5 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

Chart is given only for $f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$; therefore use Chart 20 and modification factors according to Table G.
Referring to Chart 20,

$$
A_{\mathrm{st} 2}\left(\text { for } f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}\right)=10.7 \mathrm{~cm}^{2}
$$

Using modification factors given in Table G for $f_{y}=415 \mathrm{~N} / \mathrm{mm}^{3}$,

$$
\begin{aligned}
& A_{818}=10.7 \times 0.60=6.42 \mathrm{~cm}^{2} \\
& A_{s}=10.7 \times 0.63=6.74 \mathrm{~cm}^{2} \\
& p_{\mathrm{t}, \mathrm{~h} \mathrm{~h}}=0.72 \\
& \therefore \quad A_{\mathrm{tt}, \mathrm{ltm}}=0.72 \times \frac{56.25 \times 30}{100}=12.15 \mathrm{~cm}^{8} \\
& A_{\text {st }}=12.15+6.42=18.57 \mathrm{~cm}^{2}
\end{aligned}
$$

These values of $A_{x t}$ and $A_{x c}$ are comparable to the values obtained from the table.

2.4 T-SECTIONS

The moment of resistance of a T-beam can be considered as the sum of the moment of resistance of the concrete in the web of width b_{w} and the contribution due to, flanges of width b_{r}.

The maximum moment of resistance is obtained when the depth of neutral axis is $x_{u, \text { max. }}$. When the thickness of flange is small, that is, less than about $0.2 d$, the stress in the flange will be uniform or nearly uniform (see Fig. 6) and the centroid of the compressive force in the flange can be taken at $D_{f} / 2$ from the extreme compression fibre. Therefore, the following expression is obtained for the limiting moment of resistance of T-beams with small values of D_{f} / d.

$$
\begin{aligned}
M_{\mathrm{u}, \mathrm{lim}, \mathrm{~T}}= & M_{\mathrm{u}, \mathrm{lim}, \mathrm{mob}}+0.446 f_{\mathrm{ck}} \\
& \times\left(b_{\mathrm{f}}-b_{\mathrm{w}}\right) D_{\mathrm{f}}\left(d-\frac{d_{\mathrm{f}}}{2}\right)
\end{aligned}
$$

where $M_{u, \text { lim }}$ ined
$=0.36 f_{c k} b_{w} x_{u, \max }\left(d-0.416 x_{a, \text { max }}\right)$.
The equation given in $E-2.2$ of the Code is the same as above, with the numericals rounded off to two decimals. When the flange thickness is greater than about $0.2 \frac{d}{}$, the above expression is not correct because the stress
distribution in the flange would not be uniform. The expression given in $E-2.2 .1$ of the Code is an approximation which makes allowance for the variation of stress in the flange. This expression is obtained by substituting If for D_{r} in the equation of $E-2.2$ of the Code; y_{f} being equal to ($0.15 x_{n, \max }+0.65 D_{t}$) but not greater than D_{f}. With this modification,

$$
\begin{aligned}
M_{\mathrm{u}, \mathrm{llm}, \mathrm{~T}}= & M_{\mathrm{u}, \mathrm{llm}, \mathrm{wob}}+0.446 f_{c k} \\
& \times\left(b_{f}-b_{\mathrm{w}}\right) \mathrm{ys}_{\mathrm{f}}\left(d-\frac{y_{f}}{2}\right)
\end{aligned}
$$

Dividing both sides by $f_{c k} b_{w} d^{3}$,

$$
\begin{aligned}
\frac{M_{u, l i m, T}}{f_{c k}} b_{w} d^{z} & =\frac{M_{u, l i m, w e b}}{f_{c k} b_{w} d^{z}}+0.446 \\
& \times\left(\frac{b_{r}}{b_{w}}-1\right) \frac{y_{r}}{d}\left(1^{i}-\frac{y}{2 d}\right)
\end{aligned}
$$

where

$$
\frac{y_{\mathrm{f}}}{d}=0.15 \frac{x_{\mathrm{u}, \text { max }}}{d}+0.65 \frac{D_{\mathrm{r}}}{d}
$$

$$
\text { but } \cdot \frac{y_{\mathrm{f}}}{d}<\frac{D_{\mathrm{f}}}{d}
$$

Using the above expression, the values of the moment of resistance factor $M_{u, i m, \tau} / f_{c k} b_{w} d^{2}$ for different values of b_{f} / b_{w} and D_{f} / d have been worked out and given in Tables 57 to 59 for three grades of steel.

2.5 CONTROL OF DEFLECTION

2.5.1 The deffection of beams and slabs would generally be within permissible limits if the ratio of span to effective depth of the member does not exceed the values obtained in accordance with 22.2.1 of the Code. The following basic values of span to effective depth are given:

Simply supported	20
Continuous	26
Cantilever	7

Continuous 26
Cantilever

Fic. 6 T-Section

Further modifying factors are given in order to account for the effects of grade and percentage of tension reinforcement and percentage of compression reinforcement.
2.5.2 In normal designs where the reinforcement provided is equal to that required from strength considerations, the basic values of span to effective depth can be multiplied by the appropriate values of the modifying factors and given in a form suitable for direct reference. Such charts have been prepared as explained below:
a) The basic span to effective depth ratio for simply supported members is multiplied by the modifying factor for tension reinforcement (Fig. 3 of the Code) and plotted as the base curve in the chart. A separate chart is drawn for each grade of steel. In the chart, span to effective depth ratio is plotted on the vertical axis and the tensile reinforcement percentage is plotted on the horizontal axis.
b) When the tensile reinforcement exceeds $p_{t, 1 \mathrm{llm}}$ the section will be doubly reinforced. The percentage of compression reinforcement is proportional to the additional tensile reinforcement (p_{t} - p_{t}, lim) as explained in 2.3.2. However, the value of p_{t}, lim and p_{c} will depend on the grade of concrete also. Therefore, the values of span to effective depth ratio according to base curve is modified as follows for each grade of concrete:

1) For values of p_{t} greater than the appropriate value of p_{t}, im, the value of ($p_{\mathrm{t}}-p_{\left.\mathrm{t}, \mathrm{lnm}_{\mathrm{m}}\right)}$ is calculated and then the percentage of compression reinforcement p_{c} required is calculated. Thus, the value of p_{c} corresponding to a value of p_{t} is obtained. (For this purpose d^{\prime} / d has been assumed as 0.10 but the chart, thus obtained can generally be used for all values of d^{\prime} / d in the normal range, without significant error in the value of maximum span to effective depth ratio.)
2) The value of span to effective depth ratio of the base curve is multiplied by the modifying factor for compression reinforcement from Fig. 4 of the Code.
3) The value obtained above is plotted on the same Chart in which the base curve was drawn earlier. Hence the span to effective depth ratio for doubly reinforced section is plotted against the tensile reinforcement percentage p_{t} without specifically indicating the value of p_{c} on the Chart.
2.5.3 The values read from these Charts are directly applicable for simply supported members of rectangular cross section for spans up to 10 m . For simply supported or continuous spans larger than 10 m , the values should be further multiplied by the factor ($10 /$ span in metres). For continuous spans or cantilevers, the values read from the charts are to be modified in proportion to the basic values of span to effective depth ratio. The multiplying factors for this purpose are as follows:
Continuous spans
1.3
Cantilevers 0.35

In the case of cantilevers which are longer than 10 m the Code recommends that the deflections should be calculated in order to ensure that they do not exceed permissible limits.
2.5.4 For flanged beams, the Code recommends that the values of span to effective depth ratios may be determined as for rectangular sections, subject to the following modifications:
a) The reinforcement percentage should be based on the area $b_{r} d$ while referring the charts.
b) The value of span to effective depth ratio obtained as explained earlier should be reduced by multiplying by the following factors:

b_{r} / b_{w}	Factor
>1.0	1.0
>3.33	0.8

For intermediate values, linear interpolation may be done.

Norz - The above method for flanged beams may sometimes give anomalous results. If the flanges are ignored and the beam is considered as a rectangular section, the value of span to effective depth ratio thus obtained (percentage of reinforcement being based on the area b^{-d}) should always be on the safe side.
2.5.5 In the case of two way slabs supported on all four sides, the shorter span should be considered for the purpose of calculating the span to effective depth ratio (see Note 1 below 23.1 of the Code).
2.5. 6 In the case of flat slabs the longer span should be considered (30.2.1 of the Code). When drop panels conforming to 30.2.2 of the Code are not provided, the values of span to effective depth ratio obtained from the Charts should be multiplied by 0.9 .

Example 4 Control of Deflection

Check whether the depth of the member in the following cases is adequate for controlling deflection:
a) Beam of Example 1, as a simply supported beam over a span of 7.5 m
b) Beam of Example 3, as a cantilever beam over a span of 4.0 m
c) Slab of Example 2, as a continuous slab spanning in two directions the shorter and longer spans being, 2.5 m and 3.5 m respectively. The moment given in Example 2 corresponds to shorter span.
a) Actual ratio of $\begin{aligned} & \text { Span } \\ & \text { Effective depth }\end{aligned}$
$=\frac{7 \cdot 5}{(56 \cdot 25 / 100)}=13.33$
Percentage of tension reinforcement required,

$$
p_{\mathrm{t}}=0.6
$$

Referring to Chart 22, value of $\operatorname{Max}\left(\frac{\text { Span }}{d}\right)$ corresponding to $p_{\mathrm{t}}=0.6$, is $22 \cdot 2$.

Actual ratio of span to effective depth is less than the allowable value. Hence the depth provided is adequate for controlling deflection.
b) Actual ratio of $\frac{\text { Span }}{\text { Etfective depth }}$
$=\left(\frac{4 \cdot 0}{56 \cdot 25 / 100}\right)=7 \cdot 11$
Percentage of tensile reinforcement, $p_{\mathrm{t}}=1 \cdot 117$
Referring to Chart 22,
Max value of $\left(\frac{\text { Span }}{d}\right)=21 \cdot 0$
For cantilevers, values read from the Chart are to be multiplied by 0.35 .
$\left.\begin{array}{l}\therefore \begin{array}{l}\text { Max value of } \\ l / d \text { for } \\ \text { cantilever }\end{array}\end{array}\right\}=21.0 \times 0.35=7.35$
\therefore The section is satisfactory for control of deflection.
c) Actual ratio of $\frac{\text { Span }}{\text { Effective depth }}$

$$
=\frac{2 \cdot 5}{0.08}=31 \cdot 25
$$

(for slabs spanning in two directions, the shorter of the two is to be considered)
(i) For $f y=415 \mathrm{~N} / \mathrm{mm}^{2}$

$$
p_{t}=0.475
$$

Referring to Chart 22,
$\operatorname{Max}\left(\frac{\text { Span }}{d}\right)=23.6$
For continuous slabs the factor obtained from the Chart should be multiplied by $1 \cdot 3$.

$$
\begin{aligned}
\therefore & \text { Max }{ }^{\text {Span }} \text { for continuous slab } \\
& =23.6 \times 1.3=30.68
\end{aligned}
$$

Actual ratio of span to effective depth is slightly greater than the allowable. Therefore the section may be slightly modified or actual deflection calculations may be made to ascertain whether it is within permissible limits.
(ii) For $f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$

$$
p_{t}=0.78
$$

Referring to Chart 21,

$$
\operatorname{Max}\left(\frac{\text { Span }}{d}\right)=31 \cdot 3
$$

\therefore For continuous slab,

$$
\operatorname{Max} \frac{\text { Span }}{d}=31.3 \times 1.3=40.69
$$

Actual ratio of span to effective depth is less than the allowable value. Hence the section provided is adequate for controlling deflection.

Chart 2 FLEXURE - Singly Reinforsed Section

Moment of Resistance kN.m per Metre Width

Chart 3 FLEXURE - Singly Reinforced Section

Moment of Resistance kN.m per Metre Width

As in the Original Standard, this Page is Intentionally Left Blank

Chart 4 FLEXURE - Singly Reinforced Section

Moment of Resistance $\mathrm{kN} . \mathrm{m}$ per Metre Width

Chart 5 FLEXURE - Singly Reinforced Section
Moment of Resistance $\mathrm{kN} . \mathrm{m}$ per Metre Width

$$
\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad \mathrm{f}_{\mathrm{ek}}=15 \mathrm{~N} / \mathrm{mm}^{2}
$$

Chart 6 FLEXURE - Singly Reinforced Section

Moment of Resistance $\mathrm{kN} . \mathrm{m}$ per Metre Width

$$
f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{e k}=15 \mathrm{~N} / \mathrm{mm}^{2}
$$

REINFORCEMENT PERCENTAGE, $100 \mathrm{~A}_{5} / \mathrm{bd}$

As in the Original Standard, this Page is Intentionally Left Blank

Chart 7 FLEXURE - Singly Reinforced Section Moment of Resistance kN.m per Metre Width $f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{c k}=15 \mathrm{~N} / \mathrm{mm}^{2}$

Chart 8 FLEXURE - Singly Reinforeed Section Moment of Resistance $\mathrm{kN} . \mathrm{m}$ per Metre Width

Chart 9 FLEXURE - Singly Reinforced Section

Moment of Resistance kN.m per Metre Width

As in the Original Standard, this Page is Intentionally Left Blank

Moment of Resistance kN.m per Metre Width
$f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2}$

4
正

Chart 11 FLEXURE - Singly Reinforced Section

[^2]\square
\square

\%

8

Chart 12 FLEXURE - Singly Reinforced Section
Moment of Resistance $\mathrm{kN} . \mathrm{m}$ per Metre Width

As in the Original Standard, this Page is Intentionally Left Blank

Chart 14 FLEXURE - Singly Reinforced Section

Moment of Resistance $k N . m$ per Metre Width

Chart 15 FLEXURE - Singly Reinforced Section

Moment of Resistance kN.m per Metre Width

As in the Original Standard, this Page is Intentionally Left Blank

Chart 16 FLEXURE - Singly Reinforced Section
Moment of Resistance kN.m per Metre Width

$$
f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2}
$$

Chart 17 FLEXURE - Singly Reinforced Section

Moment of Resistance $\mathrm{kN} . \mathrm{m}$ per Metre Width

Chart 18 FLEXURE - Singly Reinforced Section

Moment of Resistance kN.m per Metre Width

$$
f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \quad f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2}
$$

EFFECTIVE DEPTH, d, cm

REINFORCEMENT PERCENTAGE, $100 \mathrm{~A}_{5} / \mathrm{bd}$

As in the Original Standard, this Page is Intentionally Left Blank

Chart 19 FLEXURE - Doubly Reinforeed Section

Chart 20 FLEXURE - Doubly Reinforced Section

Values for span/effective depth ratio given in this chart are for simply supported spans up to 10 m . For spans over 10 m , multiply the values by $10 / \mathrm{span}$ in metres.
For continuous beam or slab, multiply the value for simply supported condition by 1.3 .
For cantilevers up to 10 m , multiply the value from the chart by 0.35 .
For cantilevers over 10 m , this chart is not valid.

Chart 22 CONTROL OF DEFLECTION
$f_{y}=615 \mathrm{~N} / \mathrm{mm}^{2}$

Values of Span/effective depth ratio given in this chart are for simply supported spans up to 10 m , For spans over 10 m , multiply the values by $10 / \mathrm{span}$ in metres.
For continyous beam or slab, multiply the value for simply supported condition by 1.3.
For cantilevers up to 10 m , multiply the value from the chart by 0.35 .
For cantilevers over 10 m , this chart is not valid.

Chart 23 CONTROL OF DEFLECTION

$$
t_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}
$$

Values of span/effective depth ratio given in this chart are for simply supported spans up to 10 m . For spans over 10 m , multiply the values by $10 / \mathrm{span}$ in metres.
For continuous beam or slab, multiply the value for simply supported condition by 1.3.
For cantilevers up to 10 m , multiply the value from the chart by 0.35 .
For cantilevers over 10 m , this chart is not valid.

As in the Original Standard, this Page is Intentionally Left Blank

$M_{u} / b d$ N / mm	$\mathrm{f}_{\mathrm{y}}, \mathrm{N} / \mathrm{mm}^{2}$					$M_{\mu} / b d^{2}$, N / mm	$\mathrm{fyy}^{\text {r }}$. $\underbrace{\text { /mm }}{ }^{2}$				
	240	250	415	480	500		240	250	415	480	500
0.30	0.147	0.141	0.085	0.074	0.071	1.50	0.829	0.796	0.480	0.415	0.398
0.35	$0 \cdot 172$	$0 \cdot 166$	0.100	0.086	0.083	1.52	0.842	0.809	0.487	0.421	$0 \cdot 404$
$0 \cdot 40$	$0 \cdot 198$	$0 \cdot 190$	0.114	0.099	0.095	1.54	0.856	0.821	0.495	0.428	0.411
$0 \cdot 45$	$0 \cdot 224$	$0 \cdot 215$	0.129	$0 \cdot 112$	$0 \cdot 107$	$1 \cdot 56$	0.869	0.834	0.503	$0 \cdot 434$	0.417
0.50	0.250	$0 \cdot 240$	0.144	0.125	$0 \cdot 120$	1.58	0.882	0.847	0.510	$0 \cdot 441$	0.423
0.55	0.276	0.265	0.159	0.138	$0 \cdot 132$	$1 \cdot 60$	0.896	0.860	0.518	0.448	0.430
$0 \cdot 60$	0.302	0.290	0.175	0.151	0.145	1.62	0.909	0.873	0.526	0.455	0.436
$0 \cdot 65$	$0 \cdot 329$	$0 \cdot 316$	0.190	$0 \cdot 164$	0.158	$1 \cdot 64$	0.923	0.886	0.534	0.461	0.443
$0 \cdot 70$	$0 \cdot 356$	$0 \cdot 342$	0.206	$0 \cdot 178$	$0 \cdot 171$	1.66	0.936	0.899	0.542	$0 \cdot 468$	$0 \cdot 449$
0.75	0.383	$0 \cdot 368$	0.221	$0 \cdot 191$	$0 \cdot 184$	1.68	0.950	0.912	0.550	0.475	0.456
0.80	0.410	$0 \cdot 394$	0.237	$0 \cdot 205$	$0 \cdot 197$	$1 \cdot 70$	0.964	0.925	0.558	0.482	0.463
0.82	$0 \cdot 421$	$0 \cdot 405$	0.244	0.211	0.202	1.72	$0 \cdot 978$	0.939	0.566	0.489	0.469
0.84	0.433	0.415	0.250	0.216	$0 \cdot 208$	1.74	0.992	0.952	0.574	0.496	0.476
0.86	$0 \cdot 444$	0.426	0.257	$0 \cdot 222$	0.213	$1 \cdot 76$	1.006	0.966	0.582	$0 \cdot 503$	$0 \cdot 483$
0.88	$0 \cdot 455$	0.437	0.263	$0 \cdot 227$	$0 \cdot 218$	1.78	1.020	0.980	0.590	0.510	$0 \cdot 490$
0.90	$0 \cdot 466$	0.448	$0 \cdot 270$	$0 \cdot 233$	0.224	1.80	1.035	0.993	0.598	0.517	0.497
0.92	0.477	0.458	0.276	0.239	0.229	1.82	1.049	1.007	$0 \cdot 607$	0.525	$0 \cdot 504$
0.94	0.489	0.469	0.283	0.244	0.235	1.84	1.064	1.021	0.615	0.532	0.511
0.96	0.500	$0 \cdot 480$	0.289	$0 \cdot 259$	0.240	1.86	1.078	1.035	0.624	0.539	0.518
0.98	0.512	0.491	0.296	$\bigcirc \cdot 256$	0.246	1.88	1.093	1.049	0.632	0.546	0.525
1.00	0.523	$0 \cdot 502$	0.303	$0 \cdot 262$	0.251	1.90	$1 \cdot 108$	1063	0.641	0.554	0.532
1.02	0.535	0.513	$0 \cdot 309$	$0 \cdot 267$	0.257	1.92	$1 \cdot 123$	1.078	0.649	0.561	0.539
1.04	0.546	0.524	0.316	0.273	0.262	1.94	1.138	1.092	0.658	0.569	0.546
1.06	0.558	0.536	$0 \cdot 323$	$0 \cdot 279$	0.268	1.96	$1 \cdot 153$	$1 \cdot 107$	$0 \cdot 667$	0.576	0.553
1.08	0.570	0.547	0.329	0.285	0.273	1.98	1.168	$1 \cdot 121$	0.676	0.584	0.561
$1 \cdot 10$	0.581	0.558	0.336	$0 \cdot 291$	0.279	2.00	1-184	$1 \cdot 136$	0.685	0.592	
$1 \cdot 12$	0.593	0.570	0.343	$0 \cdot 297$	0.285	2.02	$1 \cdot 199$	$1 \cdot 151$	$0 \cdot 693$		
$1 \cdot 14$	0.605	0.581	0.350	$0 \cdot 303$	$0 \cdot 290$	2.04	$1 \cdot 215$	$1 \cdot 166$	$0 \cdot 703$		
$1 \cdot 16$	$0 \cdot 617$	$0 \cdot 592$	0.357	$0 \cdot 309$	0.296	2.06	1.231	$1 \cdot 181$	0.712		
$1 \cdot 18$	0.629	0.604	0.364	0.315	$0 \cdot 302$	2.08	$1 \cdot 247$	1-197			
1.20	0.641	0.615	$0 \cdot 371$	$0 \cdot 321$	$0 \cdot 308$	$2 \cdot 10$	$1 \cdot 263$	1.212			
$1 \cdot 22$	0.653	0.627	0.378	$0 \cdot 327$	0.314	$2 \cdot 12$	1.279	$1 \cdot 228$			
1.24	0.665	0.639	0.385	0.333	$0 \cdot 319$	$2 \cdot 14$	$1 \cdot 295$	1.243			
1.26	0.678	$0 \cdot 650$	$0 \cdot 392$	0.339	$0 \cdot 325$	$2 \cdot 16$	$1 \cdot 312$	$1 \cdot 259$			
$1 \cdot 28$	0.690	0.662	0.399	0.345	0.331	2.18	$1 \cdot 328$	$1 \cdot 275$			
$1 \cdot 30$	0.702	0.674	0.406	0.351	0.337	$2 \cdot 20$	$1 \cdot 345$	1.291			
$1 \cdot 32$	0.715	0.686	0.413	0.357	0.343	2.22	$1 \cdot 362$	1-308			
$1 \cdot 34$	0.727	$0 \cdot 698$	$0 \cdot 420$	0.364	$0 \cdot 349$	2.24	$1 \cdot 379$				
$1 \cdot 36$	0.740	0.710	0.428	0.370	$0 \cdot 355$						
$1 \cdot 38$	0.752	0.722	0.435	0.376	0.361						
1.40	0.765	0.734	0.442	0.382	0.367						
1.42	0.778	0.747	$0 \cdot 450$	0.389	$0 \cdot 373$						
1.44	0.790	0.759	0.457	$0 \cdot 395$	$0 \cdot 379$						
1.46	0.803	0.771	0.465	$0 \cdot 402$	0.386						
1.48	0.816	0.784	0.472	0.408	0.392						

Note - Blanks indicate inadmissible reinforcement percentage (see Table E).

TABLE 2 FLEXURE - REINFORCEMENT PERCENTAGE, pt FOR SINGLY REINFORCED SECTIONS

M_{u} / d^{2}	$f_{y}, \mathrm{~N} / \mathrm{mm}^{2}$					$M_{u} / b d^{2}$, $\mathrm{N} / \mathrm{mm}^{2}$	$f_{y}, \mathrm{~N} / \mathrm{mm}^{2}$				
$\mathrm{N} / \mathrm{mm}^{2}$	240	250	415	480	500		240	250	415	480	500
0.30	$0 \cdot 146$	0.140	0.085	0.073	0.070	2.22	1.253	1.203	0.725	0.627	0.602
0.35	$0 \cdot 171$	$0 \cdot 164$	0.099	0.086	0.082	2.24	1.267	$1 \cdot 216$	0.733	0.633	$0 \cdot 608$
$0 \cdot 40$	0.196	0.188	0.114	0.098	0.094	2.26	1.281	1.230	0.741	0.640	0.615
$0 \cdot 45$	0.222	0.213	0.128	$0 \cdot 111$	0.106	2.28	$1 \cdot 295$	$1 \cdot 243$	0.749	$0 \cdot 647$	$0 \cdot 621$
$0 \cdot 50$	0.247	$0 \cdot 237$	0.143	$0 \cdot 123$	$0 \cdot 119$	$2 \cdot 30$	$1 \cdot 309$	$1 \cdot 256$	0.757	$0 \cdot 654$	$0 \cdot 628$
$0 \cdot 55$	0.272	0.262	0.158	0.136	0.131	$2 \cdot 32$	1.323	1.270	0.765	0.661	0.635
$0 \cdot 60$	0.298	$0 \cdot 286$	$0 \cdot 172$	0.149	0.143	$2 \cdot 34$	$1 \cdot 337$	$1 \cdot 283$	0.773	0.668	0.642
0.65	0.324	0.311	0.187	$0 \cdot 162$	0.156	2.36	$1 \cdot 351$	$1 \cdot 297$	0.781	0.675	$0 \cdot 648$
0.70	0.350	0.336	0.203	0.175	0.168	2.38	1.365	1.311	0-790	$0 \cdot 683$	0.655
0.75	0.376	$0 \cdot 361$	0.218	0.188	$0 \cdot 181$	$2 \cdot 40$	$1 \cdot 380$	1-324	0.798	$0 \cdot 690$	0.662
0.80	0.403	0.387	0.233	0.201	0.193	$2 \cdot 42$	1.394	1.338	0.806	$0 \cdot 697$	0.669
0.85	0.430	0.412	0.248	$0 \cdot 215$	$0 \cdot 206$	$2 \cdot 44$	1.408	$1 \cdot 352$	0.814	0.704	$0 \cdot 676$
$0 \cdot 90$	0.456	0.438	0.264	0.228	0.219	2.46	1.423	$1 \cdot 366$	0.823	0.711	$0 \cdot 683$
0.95	0.483	0-464	0.280	0.242	0.232	$2 \cdot 48$	$1 \cdot 438$	$1 \cdot 380$	0.831	0.719	$0 \cdot 690$
1.00	0.511	0.490	0.295	$0 \cdot 255$	0.245	2.50	1452	$1 \cdot 394$	0.840	0.726	0.697
1.05	0.538	0.517	0.311	0.269	0.258	2.52	1.467	1.408	0.848	0.734	0.704
$1 \cdot 10$	0.566	0.543	0.327	0.283	$0 \cdot 272$	2.54	1:482	1.423	0.857	0.741	0.711
$1 \cdot 15$	0.594	0.570	0.343	$0 \cdot 297$	0.285	$2 \cdot 56$	1.497	1.437	0.866	0.748	0.719
1.20	0.622	$0 \cdot 597$	0.359	0.311	0.298	$2 \cdot 58$	1.512	$1 \cdot 451$	0.874	0.756	0.726
1.25	0.650	0.624	0.376	$0 \cdot 325$	$0 \cdot 312$	$2 \cdot 60$	1.527	1.466	0.883	0.764	0.733
$1 \cdot 30$	0.678	$0 \cdot 651$	0.392	0.339	0.326	$2 \cdot 62$	1.542	1.481	$0 \cdot 892$	0.771	0.740
1.35	0.707	0.679	0.409	0.354	0.339	$2 \cdot 64$	1.558	1.495	0.901	0.779	0.748
1.40	0.736	0.707	0.426	$0 \cdot 368$	0.353	$2 \cdot 66$	1.573	1.510	0.910	0.786	0.755
1.45	0.765	0.735	0.443	$0 \cdot 383$	0.367	$2 \cdot 68$	1.588	1.525	$0 \cdot 919$	0.794	
$1 \cdot 50$	0.795	0.763	$0 \cdot 460$	$0 \cdot 397$	$0 \cdot 382$	$2 \cdot 70$	1.604	1.540	$0 \cdot 928$		
1.55	0.825	0.792	$0 \cdot 477$	0.412	0.396	2.72	1.620	1.555	0.937		
1.60	0.855	0.821	0.494	$0 \cdot 427$	$0 \cdot 410$	2.74	1.636	1.570	0.946		
1.65	0.885	0.850	0.512	0.443	0.425	2.76	1.651	1.585	0.955		
1.70	0.916	0.879	0.530	$0 \cdot 458$	$0 \cdot 440$	2.78	1.667	1.601			
1.75	0.947	0.909	0.547	$0 \cdot 473$	0.454	$2 \cdot 80$	1.683	1.616			
1.80	0.978	0.939	0.565	0.489	0.469	2.82	1.700	1.632			
1.85	1.009	0.969	0.584	0.505	0.484	2.84	1.716	1.647			
1.90	1.041	1.000	0.602	0.521	0.500	2.86	1.732	1.663			
1.95	1.073	1.030	0.621	0.537	0.515	2:88	1.749	1.679			
2.00	$1 \cdot 106$	1.062	0.640	0.553	0.531	$2 \cdot 90$	1.766	1.695			
2.02	$1 \cdot 119$	1.074	0.647	0.559	0.537	2.92	1.782	1.711			
2.04	1-132	1.087	0.655	0.566	0.543	2.94	1.799	1.727			
2.06	1-145	1.099	0.662	0.573	0.550	2.96	1.816	$\stackrel{1}{1} 743$			
2.08	$1 \cdot 159$	$1 \cdot 112$	0.670	0.579	0.556	2.98	1.833	1.760			
$2 \cdot 10$	$1 \cdot 172$	1-125	0.678	0.586	0.562						
$2 \cdot 12$	$1 \cdot 185$	$1 \cdot 138$	0.685	0.593	0.569						
$2 \cdot 14$	$1 \cdot 199$	$1 \cdot 151$	0.693	0.599	0.575						
$2 \cdot 16$	1.212	$1 \cdot 164$	0.701	0.606	0.582						
$2 \cdot 18$	1.226	1.177	0.709	0.613	0.588						
$2 \cdot 20$	$1 \cdot 239$	$1 \cdot 190$	0.717	$0 \cdot 620$	0.595						

Nort - Blanks indichte inadmissible reinforcement percentage (see Table E).

TABLE 3 FLEXURE - REINFORCEMENT PERCENTAGE, p_{\imath} FOR SINGLY REINFORCED SECTIONS

NOTE - Blanks indicate inadmissible reinforcement percentage (see Table E).

$M_{u} / b d^{2}$	$f_{y}, \mathrm{~N} / \mathrm{mm}^{2}$					$M_{u} / b d^{2}$ $\mathrm{N} / \mathrm{mm}^{2}$	$f_{y}, \mathrm{~N} / \mathrm{mm}^{2}$				
$\mathrm{N} / \mathrm{mm}^{2}$	240	250	415	480	500		240	250	415	480	500
0.30	0.145	0.140	0.084	0.073	0.070	2.55	1.374	1.319	0.794	0.687	0.659
0.35	0.170	$0 \cdot 163$	0.098	0.085	0.082	$2 \cdot 60$	$1 \cdot 404$	1.348	0.812	$0 \cdot 702$	$0 \cdot 674$
0.40	$0 \cdot 195$	$0 \cdot 187$	$0 \cdot 113$	0.097	0.093	2.65	1.435	1.378	0.830	0.718	0.689
0.45	$0 \cdot 219$	$0-211$	$0 \cdot 127$	0.110	$0 \cdot 105$	2.70	$1 \cdot 467$	$1 \cdot 408$	0.848	0.733	0.704
0.50	0.244	$0-235$	$0 \cdot 141$	$0 \cdot 122$	0-117	$2 \cdot 75$	1.498	$1 \cdot 438$	0.866	0.749	0.719
0.55	0.269	0.259	$0 \cdot 156$	0.135	$0 \cdot 129$	$2 \cdot 80$	1.530	$1 \cdot 469$	0.885	0.765	0.734
0.60	0.294	0.283	0.170	$0 \cdot 147$	$0 \cdot 141$	2.85	1.562	1.499	0.903	0.781	0.750
0.65	$0 \cdot 320$	$0 \cdot 307$	$0 \cdot 185$	$0 \cdot 160$	$0 \cdot 153$	2.90	1.594	1.530	0.922	0.797	0.765
0.70	0.345	0.331	$0 \cdot 200$	$0 \cdot 172$	$0 \cdot 166$	2.95	1.626	1.561	0.940	0.813	0.781
0.75	0.370	0.356	0.214	$0 \cdot 185$	0.178	3.00	1.659	1.592	0.959	0.829	$0 \cdot 796$
0.80	0.396	0.380	0.229	$0 \cdot 198$	0.190	3.05	1.691	1.624	0.978	0.846	0.812
0.85	0.422	$0 \cdot 405$	0.244	0.211	$0 \cdot 202$	$3 \cdot 10$	1.725	1.656	0.997	0.862	0.828
0.90	0.447	0.429	0.259	0.224	0.215	$3 \cdot 15$	1.758	1.687	1.017	0.879	0.844
0.95	$0 \cdot 473$	$0 \cdot 454$	$0 \cdot 274$	0.237	$0 \cdot 227$	3.20	1.791	1.720	1.036	0.896	0.860
1.00	0-499	0.479	$0 \cdot 289$	0.250	$0 \cdot 240$	$3 \cdot 25$	1.825	1.752	1.055	0.913	0.876
1.05	0.525	0.504	$0 \cdot 304$	0.263	0.252	$3 \cdot 30$	1.859	1.785	1.075	0.930	0.892
$1 \cdot 10$	0.552	0.529	0.319	0.276	0.265	$3 \cdot 35$	1.893	1.818	1.095	0.947	$0 \cdot 909$
$1 \cdot 15$	0.578	0.555	0.334	0.289	0.277	$3 \cdot 40$	1.928	1.851	$1 \cdot 115$	$0 \cdot 964$	$0 \cdot 925$
$1 \cdot 20$	0.604	0.580	0.350	$0 \cdot 302$	$0 \cdot 290$	$3 \cdot 45$	1.963	1.884	$1 \cdot 135$	$0 \cdot 981$	0.942
1.25	0.631	0.606	$0 \cdot 365$	0.315	0.303	3.50	1.998	1.918	$1 \cdot 156$	0.999	0.959
$1 \cdot 30$	$0 \cdot 658$	0.631	0.380	$0 \cdot 329$	0.316	3.55	2.034	1.952	$1 \cdot 176$	1.017	0.976
$1 \cdot 35$	0.685	0.657	$0 \cdot 396$	$0 \cdot 342$	$0 \cdot 329$	$3 \cdot 60$	2.069	1.986	$1 \cdot 197$	1.035	0.993
1.40	0.712	$0 \cdot 683$	0.411	0.356	0.342	$3 \cdot 65$	$2 \cdot 105$	2.021	1-218	1.053	1.011
$1 \cdot 45$	0.739	0.709	0.427	0.369	0.355	3.70	2.142	2.056	1.239	1.071	1.028
1.50	0.766	0.735	0.443	0.383	$0 \cdot 368$	3.75	2.178	2.091	1-260	1.089	1.046
1.55	0.793	0.762	0.459	0.397	0.381	3.80	2.215	$2 \cdot 127$	1.281	$1 \cdot 108$	1.063
$1 \cdot 60$	0.821	0.788	0.475	0.410	$0 \cdot 394$	3.85	$2 \cdot 253$	$2 \cdot 163$	$1 \cdot 303$	$1 \cdot 126$	1.081
$1 \cdot 65$	0.849	0.815	$0 \cdot 491$	0.424	0.407	3.90	$2 \cdot 291$	$2 \cdot 199$	1.325	$1 \cdot 145$	1.099
$1 \cdot 70$	0.876	0.841	0.507	0.438	0.421	3.95	$2 \cdot 329$	$2 \cdot 236$	$1 \cdot 347$	$1 \cdot 164$	$1 \cdot 118$
1.75	0.904	0.868	0.523	0.452	0.434	4.00	$2 \cdot 367$	$2 \cdot 273$	$1 \cdot 369$	1-184	
1.80	0.932	0.895	0.539	0.466	0.448	4.05	2.406	2.310	1-391		
1.85	0.961	0.922	0.556	$0 \cdot 480$	0.461	$4 \cdot 10$	$2 \cdot 445$	$2 \cdot 348$	$1 \cdot 414$		
1.90	0.989	0.950	0.572	0.495	0.475	4.15	$2 \cdot 485$	$2 \cdot 386$			
1.95	1.018	0.977	0.589	0.509	0.488	$4 \cdot 20$	2.525	2.424			
2.00	1.046	1.005	0.605	0.523	$0 \cdot 502$	4.25	2.566	$2 \cdot 463$			
2.05	1.075	1.032	$0 \cdot 622$	0.538	0.516	$4 \cdot 30$	$2 \cdot 607$	2.502			
$2 \cdot 10$	1.104	1.060	0.639	0.552	0.530	4.35	$2 \cdot 648$	$2 \cdot 542$			
2.15	1.134	1.088	0.656	0.567	0.544	$4 \cdot 40$	$2 \cdot 690$	$2 \cdot 583$			
2.20	$1 \cdot 163$	$1 \cdot 116$	0.673	0.581	0.558	$4 \cdot 45$	2.733	$2 \cdot 623$			
2.25	$1 \cdot 192$	$1 \cdot 145$	0.690	0.596	0.572						
$2 \cdot 30$	$1 \cdot 222$	$1 \cdot 173$	$0 \cdot 707$	0.611	0.587						
$2 \cdot 35$	1.252	1.202	0.724	0.626	0.601						
$2 \cdot 40$	1.282	1.231	0.742	0.641	0.615						
2.45	1.312	1.260	0.759	0.656	0.630						
$2 \cdot 50$	1.343	1-289	0.777	0.671	0.645						

NoTE-Blanks indicate inadmissible reinforcement percentage (see Table E).

TABLE 5 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$$
\begin{aligned}
f \mathrm{ck} & =15 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{y} & =250 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Thickness } & =100 \mathrm{~cm}
\end{aligned}
$$

Bat		Bat Dungeter, mm			Baz Spacino. cm	Bax DuMerit, mm			
$\underset{\mathrm{cm}}{\mathrm{cmict}}$	6	8	10	12		6	8	16	12
5	8.92	1402	000	000	20	000	$4 \cdot 20$	627	8.55
6	7.59	12.20	0-00	000	21	$0 \cdot 0$	4.01	600	$8-19$
7	6.61	10.77	$0-00$	0.00	22	0.00	3.83	$5 \cdot 74$	7.87
8	5.85	963	$13 \cdot 56$	000	23	$0-00$	$3 \cdot 67$	5-51	7.56
9	$5 \cdot 24$	$8 \cdot 70$	$12 \cdot 40$	000	24	000	5.53	$5 \cdot 30$	7.28
10	4.75	7-93	11.41	000			3.39	5.10	702
11	4-34	$7 \cdot 29$	10.56	1381	26	000	$3 \cdot 27$	4.92	678
12	400	6.74	988	1295	27	000	$3 \cdot 15$	4.75	656
13	$3 \cdot 70$	626	$9 \cdot 18$	12.19	28	000	3.04	4.59	6.34
14	$3 \cdot 45$	$5 \cdot 85$	8.61	$11 / 50$	29	000	2.94	$4 \cdot 44$	6.14
15	$3-23$	$5 \cdot 49$	$8 \cdot 11$	1088	30	000	$2 \cdot 85$	$4 \cdot 30$	5.96
16	304	$5 \cdot 17$	766	10.32	35	000	$0-00$	3.72	$5-17$
17	$2 \cdot 86$	4-89	$7 \cdot 26$	9.81	40	000	$0-00$	327	4-56
18	2.71	4-63	6.90	9.35					
12	$0 \cdot 00$	4. 60	6.57	$8 \cdot 93$					

Nore 1 - Zeros iodicate inadmissible relnforsement percealage.
Nom: 2 - Bar spacings below the dividing line exceed $3 d$.

TABLE 6 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

								$\begin{gathered} f_{6 \mathrm{k}}= \\ f_{Y}= \\ \text { iess }= \end{gathered}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm} \mathrm{~m}^{2} \\ & \mathrm{~cm} \end{aligned}$
Bak		Bar D	TR, mim		Bat		1 D	mm	
Spactin	6	8	10	12	$\begin{gathered} \text { Spacina, } \\ \text { em } \end{gathered}$	6	8	10	12
5	14.15		$0-00$	$0-00$	20	0 mm	4.74		
6	$8 \cdot 62$	1402	$0 \cdot 00$	0.00	21	000	4.53	6.81	- 9.78
7	$7 \cdot 48$	12.33	17-37	000	22	0-00	4.33	652	8.98
8	6.61	10.99	15-70	$0-00$	21	$0 \cdot 0$	4.15	6.26	${ }^{8} .61$
9	$5 \cdot 92$	9-91	14-30	000	24	000	$3 \cdot 98$	601	8.31
10	$5 \cdot 36$	9.02	13-12	17.23	25	0-00	3.83	5.79	
11	4.90	$8 \cdot 28$	12-11	16.04	26	$0-00$	369	5.58	773
12	4-51	$7 \cdot 65$	11.25	15.00	27	$0-00$	$3 \cdot 56$	$5 \cdot 38$	7-47
13	4.18	$7 \cdot 10$	10.49	14.08	38	0-00	$3 \cdot 43$	5.20	$7-22$
14	$3 \cdot 89$	663	983	13.25	29	0000	532	505	6.99
15	3-64	622	9.25	12.52	30	$0-00$	$3 \cdot 21$	$4 \cdot 87$	6.78
16	$3 \cdot 42$	$5 \cdot 8.5$	$8 \cdot 73$	11.86	35	0.00	000	421	5-87
17	$3 \cdot 23$	$5 \cdot 53$	$8 \cdot 26$	11.26	40	$0 \cdot 00$	000	3.70	$5 \cdot 18$
18	000	5.24	7.84	10.72	45	0.00	000	$3 \cdot 30$	463
19	0.00	$4 \cdot 98$	$7 \cdot 47$	10.23					

Nors 1 - Zeros indicate inadmissible reinforcement percentage.
Nors 2 - Bar spacings below the dividing line eweeed 3d.

Bar		Bar	R, mm		Baz		D Du	mm	
$\begin{gathered} \text { Spacm } \\ \mathrm{em} \end{gathered}$	6	8	10	12	Spactavo, cm	6	8	10	12
5	11/37	18.39	000	0.00	20	0.00	5.29	7.98	1101
6	9.64	$15 \cdot 84$	22.22	0.00	21	000	5.05	$7 \cdot 62$	$10-53$
7	$8 \cdot 36$	13.89	19.81	$0 \cdot 00$	22	000	483	$7 \cdot 30$	$10 \cdot 10$
8	$7 \cdot 38$	12:36	17.83	0.00	23	$0 \cdot 00$	$4 \cdot 62$	700	970
9	6661	11.13	1620	21.30	24	0.00	$4 \cdot 44$	6.72	933
10	$5 \cdot 98$	$10 \cdot 12$	1483	$19 \cdot 68$	25	000	427	647	899
11	$5 \cdot 46$	927	$13 \cdot 67$	18.28	26	000	411	6.23	8.67
12	5.02	$8 \cdot 56$	12.67	17.05	27	0.00	$3 \cdot 96$	602	8.38
13	$4 \cdot 65$	7-95	11.80	15.97	28	000	0.00	5.81	8.10
14	$4 \cdot 33$	7×11	11.05	15.01	29	000	$0-00$	$5 \cdot 62$	$7 \cdot 84$
15	405	6.95	10.35	1416	30	000	000	$5 \cdot 44$	7.60
16	0.00	654	979	$13 \cdot 39$	35	000	000	469	6.57
17	0.00	6.17	927	12.71	40	000	000	413	$5 \cdot 79$
18	0.00	5-85	$8 \cdot 79$	12.09	45	000	$0-00$	000	$5 \cdot 18$
19	0-00	5.55	$8 \cdot 36$	11.52					

Note 1 - Zeros indicate inadmissible relnforcement percentage.
Nom 2 - Bar spacings below the dividing line exceed $3 d$.

TABLE 8 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Norz 1-Zerus iodicate iadmissible reinforcement percontage,
Nore 2-Bar spacings below the dividing line exceed 3 d.

TABLE 9 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

		Bak Diasurran, min				BaR Spacino, eft	5	$\begin{gathered} f \mathrm{ck}=15 \mathrm{~N} / \mathrm{mm}^{*} \\ f_{y}=250 \mathrm{~N} / \mathrm{mm}^{4} \\ \text { Thickiess }=140 \mathrm{~cm} \end{gathered}$ Bua Duastik, mam			
		8	10	12	16			8	${ }_{10}^{10}$	12	16
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{array}{r} 13.83 \\ 11.69 \\ 10.12 \\ 8.92 \\ 7.97 \end{array}$	$\begin{aligned} & 27.76 \\ & 1948 \\ & 17.01 \\ & 1509 \\ & 13.56 \end{aligned}$	$\begin{aligned} & 31-99 \\ & 2791 \\ & 24 \cdot 69 \\ & 22 \cdot 10 \\ & 19 \cdot 99 \end{aligned}$	$\begin{array}{r} 0-00 \\ 000 \\ 0-00 \\ 29-30 \\ 26 \cdot 76 \end{array}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0-00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 6.38 \\ & 6.09 \\ & 5.52 \\ & 5.57 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 9 \cdot 68 \\ & 9 \cdot 23 \\ & 8 \cdot 85 \\ & 8 \cdot 48 \\ & 8 \cdot 15 \end{aligned}$	$\begin{aligned} & 13.46 \\ & 12.86 \\ & 12.34 \\ & 11.84 \\ & 11.38 \end{aligned}$	$\begin{aligned} & 21 \cdot 67 \\ & 25-81 \\ & 20 \cdot 01 \\ & 19 \cdot 25 \\ & 18.57 \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 7.21 \\ & 655 \\ & 605 \\ & 5.60 \\ & 000 \end{aligned}$	$\begin{aligned} & 12.30 \\ & 11.26 \\ & 10.38 \\ & 963 \\ & 8.97 \end{aligned}$	$\begin{aligned} & 18 \cdot 24 \\ & 16 \cdot 77 \\ & 15 \cdot 51 \\ & 14 \cdot 43 \\ & 13 \cdot 49 \end{aligned}$	$\begin{aligned} & 24 \cdot 60 \\ & 2275 \\ & 21-15 \\ & 19.75 \\ & 18 \cdot 52 \end{aligned}$	$\begin{array}{r} 0.00 \\ 000 \\ 0.00 \\ 0.00 \\ 28.71 \end{array}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \\ & 000 \\ & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 000 \\ & 000 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 7.84 \\ & 7.55 \\ & 7 \cdot 28 \\ & 7.03 \\ & 6.80 \end{aligned}$	10.96 10.56 10.20 9.86 9.54	$17-93$ 17.32 1676 16.23 $15-73$
15	000	$8 \cdot 41$	12.66	17.44	27.26	30	$0 \cdot 00$	000	658	924	15.27
16	000	790	11-93	16.47	25.94	33	0.00	000	567	7.98	$13 \cdot 29$
$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 7.46 \\ & 7.06 \end{aligned}$	$\begin{aligned} & 11 \cdot 28 \\ & 10^{-69} \end{aligned}$	$\begin{aligned} & 15-60 \\ & 1482 \end{aligned}$	$\begin{aligned} & 24.73 \\ & 23.69 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 000 \end{aligned}$	$\begin{aligned} & 7.02 \\ & 627 \end{aligned}$	$\begin{aligned} & 11.76 \\ & 10.54 \end{aligned}$

Nore 1-Zeros indicate isadmissibloreinforcement percentage.
Nors 2 - Bar spacings below the dividing line exceed 3d,
TABLE 10 FLEXURE-MOMENT OF RESISTANCE OFSLABS, kN,m PER METRE WIDTH

Hen Spaceno, cm		Rar Dhameter, mm			$\begin{aligned} f+\mathrm{k} & =15 \mathrm{~N} / \mathrm{mm}^{4} \\ f_{y} & =250 \mathrm{~N} / \mathrm{mm}^{4} \\ \text { Thicknes } & =1500 \mathrm{~cm} \end{aligned}$	
	-6	8	10	12	16	18
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{gathered} 1506 \\ 12.71 \\ 11100 \\ 9.69 \\ 8.66 \end{gathered}$	$\begin{aligned} & 24-95 \\ & 21 \cdot 30 \\ & 18 \cdot 57 \\ & 1646 \\ & 14 \cdot 77 \end{aligned}$	$\begin{aligned} & 35 \cdot 41 \\ & 30-76 \\ & 27.13 \\ & 24.24 \\ & 21 \cdot 89 \end{aligned}$	$\begin{array}{r} 0 \cdot 00 \\ 0 \cdot 00 \\ 35 \cdot 81 \\ 32 \cdot 37 \\ 29.49 \end{array}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0 \cdot 00 \\ & 0 \cdot 00 \\ & 0 \cdot 00 \\ & 0.00 \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 7.82 \\ & 7.14 \\ & 6.56 \\ & 0.00 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 13 \cdot 39 \\ & 12.25 \\ & 11 \cdot 29 \\ & 10.27 \\ & 9.76 \end{aligned}$	$\begin{aligned} & 19-95 \\ & 18.32 \\ & 16.94 \\ & 15 \cdot 75 \\ & 14.71 \end{aligned}$	$\begin{aligned} & 27.06 \\ & 2498 \\ & 23 \cdot 20 \\ & 21.64 \\ & 20.28 \end{aligned}$	$\begin{array}{r} 000 \\ 000 \\ 000 \\ 33.65 \\ 31-83 \end{array}$	$\begin{aligned} & 000 \\ & 0000 \\ & 000 \\ & 000 \\ & 000 \end{aligned}$
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 8.13 \\ & 8.59 \\ & 8 \cdot 10 \\ & 7.67 \\ & 7 \cdot 28 \end{aligned}$	$\begin{aligned} & 13 \cdot 80 \\ & 13.00 \\ & 12.28 \\ & 11.64 \\ & 11.06 \end{aligned}$	$\begin{aligned} & 19.07 \\ & 1800 \\ & 17 \cdot 25 \\ & 16 \cdot 18 \\ & 15 \cdot 40 \end{aligned}$	$\begin{aligned} & 30-17 \\ & 28.67 \\ & 27.30 \\ & 26.05 \\ & 24.91 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 33.32 \\ & 31.87 \\ & 30.53 \\ & 29.28 \end{aligned}$
$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 000 \\ & 000 \\ & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 6-93 \\ & 661 \\ & 6 \cdot 32 \\ & 000 \\ & 0.00 \end{aligned}$	$\begin{array}{r} 10.54 \\ 10-06 \\ 9 \cdot 63 \\ 9923 \\ 8.86 \end{array}$	$\begin{aligned} & 14-69 \\ & 1405 \\ & 13-45 \\ & 1291 \\ & 12.41 \end{aligned}$	$\begin{aligned} & 23 \cdot 85 \\ & 22.89 \\ & 21 \cdot 99 \\ & 21 \cdot 16 \\ & 20.39 \end{aligned}$	$\begin{aligned} & 25 \cdot 13 \\ & 27-13 \\ & 25-06 \\ & 25-13 \\ & 24-26 \end{aligned}$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 000 \\ & 0.00 \\ & 0-00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 8.52 \\ & 8 \cdot 20 \\ & 7-91 \\ & 764 \\ & 7-39 \end{aligned}$	$\begin{aligned} & 11-94 \\ & 11.51 \\ & 11 \cdot 11 \\ & 10.73 \\ & 10.38 \end{aligned}$	$\begin{aligned} & 19.67 \\ & 19.00 \\ & 18.36 \\ & 17.79 \\ & 17.24 \end{aligned}$	$\begin{aligned} & 21 \cdot 45 \\ & 22.68 \\ & 21.97 \\ & 21 \cdot 29 \\ & 20.66 \end{aligned}$
$\begin{array}{r} 30 \\ 35 \\ \hline \end{array}$	$\begin{aligned} & 0-00 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 715 \\ & 0.00 \end{aligned}$	$\begin{array}{r} 10.05 \\ 8.68 \end{array}$	$\begin{aligned} & 16 \cdot 72 \\ & 14.53 \end{aligned}$	$\begin{aligned} & 20.05 \\ & 17.52 \end{aligned}$
40 45	000 000	000 000	0	764 688	¢	1553 1396

Nors 1 - Zeros indicate inadmissible reiaforcement percentige.
Nora 2-Bat spacings below the dividing line exceed $3 d$.

TABLE 11 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Norrs - Zeron indicate intimiestle reinforcement percentage.

TABLE 12 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

TABLE 13 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$$
\begin{aligned}
f_{\mathrm{ck}} & =15 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{5} & =250 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Thickness } & =22.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Bur	BAR DUAESTER, mm								
Spacino, cm	-	8	10	12	16	18	20	22	25
5	24.25	41^{-34}	61.02	81.69	000	$0 \cdot 60$	000	0000	900
6	$20 \cdot 40$	34.96	52-10	70.66	000	000	000	0.00	0.00
7	17.58	$30 \cdot 28$	$45 \cdot 42$	62.15	000	000	000	000	$0 \cdot 00$
8	15.45	$26 \cdot 70$	$40-24$	55.42	$86 \% 2$	000	000	$0-00$	0.00
9	0.00	23.88	36.12	49-98	79.45	000	0.00	000	0.60
10	000	21.59	32:76	45:50	73-14	85.96	0000	000	$0 \cdot 00$
11	000	'1970	2996	41.75	67.71	80.09	000	$0 \cdot 00$	$0-60$
12	0.00	18-12	27.61	38.56	62.99	74.91	0.00	0.00	$0 \cdot 0$
13	0.00	$16 \cdot 77$	25.60	35.83	58.87	$70 \cdot 31$	81.18	$0 \cdot 0$	000
14	$0 \cdot 00$	$15 \cdot 61$	23 -86	33.45	5524	$66 \cdot 21$	76.79	$0-00$	000
15	000	0-00	22-34	31.37	5203	62:54	7281	000	000
16	0.00	0.00	21.00	29.53	4916	59.25	6820	78.62	000
17	0.00	$0 \cdot 0$	19.81	27.89	4659	56.27	6591	75.13	000
18	000	0.00	18.75	2643	4427	53.58	6290	71.91	000
19	O00	0.00	17-80	25.11	$42 \cdot 16$	51.12	$60 \cdot 14$	68.93	000
20	000	000	1694	23-91	$40 \cdot 25$	$45 \cdot 87$	57.61	66.18	78.11
21	000	000	1016	22.83	38.50	4581	5527	63.63	$75 \cdot 39$
22	$0 \cdot 00$	000	15.45	21.64	3689	44.92	$5 \cdot 11$	$61 \cdot 25$	72-82
23	000	000	1479	20-93		$43 \cdot 17$	$51 \cdot 11$	59.04	$70 \cdot 41$
24	0.00	0.00	$0-00$	20009	$34 \cdot 05$	41.55	$49 \cdot 25$	5698	$68 \cdot 14$
25	000	000	0.00	$19 \cdot 32$	$32 \cdot 79$	40-04	4752	5505	6600
26	0.00	$0-00$	0.00	1860	$31 \cdot 61$	31.64	45.91	53.24	$63 \cdot 98$
27	0.00	0.00	0.00	17-94	30-52	37.33	44.40	51.55	62.07
28	0.00	0.00	0.00	17.32	29.50	$36 \cdot 11$	42.98	4996	6027
29	$0-00$	$0 \cdot 00$	$0 \cdot 00$	$16^{\prime} 74$	28-54	34.97	41.65	45.46	58-56
30	0.00	000	0.00	16.20	27.65	33.89	40.40	47.04	5695
35	0.00	000	0.00	0000	23.90	29.37	$35 \cdot 12$	41.04	5001
40	0.00	000	0.00	000	21.04	25.91	31.05	36.38	44-54
45	0.00	0-00	$0 \cdot 00$	000	18-60	$23 \cdot 18$	27-82	32'66	40-13

Nort - Zeros indicate isadriassible reinfotcement persentage.

TABLE 14 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$f_{z}=250 \mathrm{~N} / \mathrm{mm}^{2}$
Thickness -250 em

TVOIE - Zeros indicate inadmissible reinforcement percentage.

Nore 1 - Zeros indicate inadmissible reinforcement percentage.
Nort 2 - Bar spacings below the dividing line exceed 3d.

TABLE 16 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Note 1 - Zeros indicate inadmissible reinforcement percentage.
Norz 2 - Bar spacings below the dividing line exceed $3 d$.

TABLE 17 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$$
\begin{aligned}
f_{\text {ck }} & =15 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{y} & =415 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Thickness } & =120 \mathrm{~cm}
\end{aligned}
$$

Nom 1 -Zeros fadicate inadmissible reinforcement perosatige.
Note 2 - Bar spacings below the dividing line exceed $3 d$.

TABLE 18 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m
PER METRE WIDTH

$$
\begin{array}{r}
f_{\mathrm{ct}}=15 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Thickness }=13.0 \mathrm{~cm}
\end{array}
$$

$\underset{\substack{\text { Bas } \\ \text { SiActaco, } \\ \text { cm }}}{ }$		Bar Dunarter, mm			
		8	10	12	16
5	19.65	0.00	$0-00$	0.00	$0-00$
6	16 r 82	000	$0 \cdot 0$	0.00	0.00
7	1469	$23 \cdot 59$	000	000	000
8	$13-03$	$21 \cdot 21$	0-00	000	$0-\infty$
9	11.71	$19-24$	0-0	000	$0-00$
10	$10 \cdot 63$	17-60	24.99		000
11	9.73	1621	23-23	$0 \cdot 00$	0.00
12	$8 \cdot 97$	15-02	21.68	0.00	000
13	$8 \cdot 32$	13-99	$20-32$	$0-00$	0.00
14	775	13-09	19.11	0.00	$0 \cdot 00$
15	7.26			23.95	0.00
16	$6 \cdot 83$	11.59	17.07	22.79	0.00
17	644	$10-97$	16.20	21.73	0.00
18	$6 \cdot 10$	10.40	15-41	20.75	0.00
19	000	9.90	1469	19.86	0.00

Bak Spacing, cm		Bak Duamers, mm			
	6	8	10	12	16
20	0.00	$9 \cdot 43$	14.04	19.04	000
21	000	9.01	13.44	$18 \cdot 27$	$0 \cdot 00$
n	000	$8 \cdot 63$	12.89	17.57	0.00
23	000	$8 \cdot 28$	12-39	16.92	0.00
24	$0-00$	$7 \cdot 95$	11-92	16.31	$0-00$
25	$0 \cdot 0$	$7 \cdot 65$	11.48	$15 \cdot 74$	0.00
26	$0 \cdot 0$	$7 \cdot 37$	11.08	15.21	0-00
27	$0-00$	$7 \cdot 11$	10.70	14.72	22-92
28	00	6.87	10.35	1425	22.30
29	$0 \cdot 0$	6.64	10 -01	13-81	21.70
30	0.00	643	$9 \cdot 70$	13-40	21.13
35	$0 \cdot 0$	$0 \cdot 00$	$8 \cdot 40$	11.66	18.66
40	000	000	7.41	10.32	16.69
45	000	000	$6 \cdot 62$	9.25	15.09

Nors 1 - Zeros indicate Inadmissible reinforcement percentage.
Nore 2 - Bar spacings below the dividing line exceed $3 d$,

TABLE 19 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$$
\begin{aligned}
f \mathrm{cz} & =15 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{f} & =415 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Thickness } & =14.0 \mathrm{~cm}
\end{aligned}
$$

$\begin{gathered} \text { Bar } \\ \text { Spacing, } \\ \mathrm{cm} \end{gathered}$		Bak Dinuertr, mm			16	$\left\lvert\, \begin{gathered} \text { Bar } \\ \text { SPACENO, } \\ \mathrm{cm} \\ \hline \end{gathered}\right.$	Bar Diamitir, mma				
		8	${ }_{10}$	12			$\longdiv { 6 }$	8	10	12	16
5	21.69	$0-00$	0.00	$0 \cdot 00$	0.00	20	$0 \cdot 00$	10.34	15.46	21.08	000
6	18-52	29.54	000	000	000	21	$0-00$	9-88	14.79	20.22	$0-00$
7	$16 \cdot 15$	26.18	000	000	000	22	$0-00$	$9 \cdot 45$	14.18	19.43	$0-00$
8	14-31	$23 \cdot 48$	000	$0 \cdot 00$	000	23	000	906	13.62	18.69	0.00
9	12-84	21.26	000	000	000	24	$0-00$	$8-71$	$13 \cdot 10$	18-01	$0 \cdot 00$
10	11.65	$19 \cdot 41$	27.82	$0-00$	0.00	25	000	8.37	12.61	17.37	$27 \cdot 18$
11	10.65	17.86	25.80	0.00	000	26	000	8.07	12.17	16.78	26.37
12	9.82	1653	24.05	$0 \cdot 00$	0.00	27	000	7.78	11.75	1623	25.61
13	$9 \cdot 10$	15.38	22.50	000	000	28	000	7.52	11.36	1597	24.89
14	$8 \cdot 48$	1438	$21 \cdot 14$	28.14	000	29	000	$7 \cdot 27$	10.98	1522	24.20
						30	000	$0 \cdot 00$	10.65	1476	23.55
16	7.47	12.73	18.84	25.34	000	35	000	0.00	9.21	$12 \cdot 83$	20.74
17	1000	12.03	17.87	24.13	00°	40	000	0.00	$8 \cdot 12$	11.34	18.51
18	0-00	11.41	16.99	23.02	$0-\infty$	45	000	$0-00$	$7 \cdot 25$	10.16	16.70
19	000	10.85	$16 \cdot 19$	22.01	000						

Notr I-Zeros indicate inadmissible reinforcement percentage.
Nors 2 - Bar spacings below the dividing line exceed 3d.

TABLE 20 FLEXURE - MOMENT OF RESISTANCB OF SLABS, kN.m
 TABLE 20 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m

415

$f_{\text {at }}=15 \mathrm{~N} / \mathrm{mm}^{2}$ $f_{y}=415 \mathrm{~N} / \mathrm{mn}^{2} ?$
Thickness $=15.0 \mathrm{~cm}$

Bar			Bar Dineter, mam			
Spacing, em	6	8	10	12	16	18
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 23.73 \\ & 20.22 \\ & 17.60 \\ & 15 \cdot 58 \\ & 13.97 \end{aligned}$	$\begin{array}{r} 9.09 \\ 32.56 \\ 28.77 \\ 25 \cdot 74 \\ 23 \cdot 27 \end{array}$	$\begin{array}{r} 0.00 \\ 000 \\ 0.00 \\ 000 \\ 33.30 \end{array}$	$\begin{aligned} & 0-00 \\ & 0.00 \\ & 0-00 \\ & 0-00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0-00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{gathered} 12 \cdot 67 \\ 1 \cdot 68 \\ 10.67 \\ 9.89 \\ 9 \cdot 21 \end{gathered}$	$\begin{aligned} & 21-23 \\ & 19.51 \\ & 18.04 \\ & 16.78 \\ & 15 \cdot 68 \end{aligned}$	$\begin{aligned} & 30 \cdot 66 \\ & 28.38 \\ & 26 \cdot 41 \\ & 24 \cdot 68 \\ & 23 \cdot 16 \end{aligned}$	$\begin{array}{r} 0.00 \\ 000 \\ 0-00 \\ 32.91 \\ 31-06 \end{array}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 8 \cdot 62 \\ & 0.00 \\ & 0.00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 14 \cdot 72 \\ & 13.86 \\ & 13 \cdot 10 \\ & 12 \cdot 42 \\ & 11.80 \end{aligned}$	$\begin{aligned} & 21 \cdot 81 \\ & 20.61 \\ & 19.53 \\ & 18.56 \\ & 17 \cdot 68 \end{aligned}$	$\begin{aligned} & 29 \cdot 40 \\ & 27.89 \\ & 26 \cdot 53 \\ & 25 \cdot 29 \\ & 24 \cdot 16 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$
$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 11 \cdot 25 \\ & 1074 \\ & 10-28 \\ & 9-85 \\ & 9-46 \end{aligned}$	$\begin{aligned} & 16.88 \\ & 16.14 \\ & 15 \cdot 47 \\ & 14.85 \\ & 1428 \end{aligned}$	$\begin{aligned} & 23 \cdot 12 \\ & 22 \cdot 16 \\ & 21 \cdot 28 \\ & 20 \cdot 47 \\ & 19 \cdot 71 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 000 \\ & 0000 \\ & 32.08 \\ & 31-05 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0-00 \\ & 0-00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 9 \cdot 10 \\ & 8 \cdot 76 \\ & 8 \cdot 45 \\ & 0 \cdot 00 \\ & 0 \cdot 00 \end{aligned}$	$\begin{aligned} & 13 \cdot 75 \\ & 13 \cdot 26 \\ & 12.80 \\ & 12.37 \\ & 11.97 \end{aligned}$	$\begin{aligned} & 19.01 \\ & 18.35 \\ & 17.74 \\ & 17.17 \\ & 16.63 \end{aligned}$	$\begin{aligned} & 30-08 \\ & 29.16 \\ & 28 \cdot 30 \\ & 27.48 \\ & 2670 \end{aligned}$	$0-00$ $0-00$ $0-00$ $0-00$ $31-22$
$\begin{aligned} & 30 \\ & 35 \\ & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{array}{r} 11 \cdot 59 \\ 10.02 \\ 8.82 \\ 0.00 \end{array}$	$16 \cdot 12$ 14.00 $12 \cdot 36$	$\begin{aligned} & 25 \cdot 97 \\ & 22-81 \\ & 20-32 \\ & 18-31 \end{aligned}$	$30-43$ $26-97$ $24-18$ 21.89

Nöre - Zeros indicate inadmissible reinforcement percentage.

TABLE 21 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Bas Sphcinc,	Bar Dlameter, mm.						
	6	8	10	12	16	18	20
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 28.83 \\ & 24.47 \\ & 21-25 \\ & 18.77 \\ & 16.81 \end{aligned}$	$\begin{aligned} & 46 \cdot 46 \\ & 40 \cdot 12 \\ & 35 \cdot 25 \\ & 31 \cdot 41 \\ & 25 \cdot 31 \end{aligned}$	$\begin{array}{r} 000 \\ 000 \\ 000 \\ 45 \cdot-24 \\ 41 \cdot 17 \end{array}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 000 \\ & 0.00 \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{array}{r} 15 \cdot 22 \\ 13 \cdot 90 \\ 12.79 \\ 11.85 \\ 0.00 \end{array}$	$25 \cdot 76$ $23 \cdot 63$ 21.82 20.27 $18 \cdot 92$	$37-74$ $34-82$ 32.31 30.13 $28-22$	$0-00$ $46-53$ $43-47$ 40.76 $38 \cdot 35$	$\begin{aligned} & 0-00 \\ & 0.00 \\ & 000 \\ & 0.00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 000 \\ & 000 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00 0.00 0.00 0.00 0.00
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0-00 \\ & 0.00 \\ & 0.00 \end{aligned}$	17.74 1670 $15-77$ $14-94$ $14-19$	26.54 $25-04$ 23.70 22.50 21.41	$36 \cdot 20$ $34-27$ 32.53 30.96 $29-53$	$\begin{aligned} & 000 \\ & 000 \\ & 0000 \\ & 0000 \\ & 4643 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$0-00$ $0-00$ $0-00$ $0-00$ $0-00$
$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 13-51 \\ & 12 \cdot 90 \\ & 12 \cdot 34 \\ & 11.82 \\ & 0-00 \end{aligned}$	$20-42$ $19-52$ 18.69 17.93 $17-23$	28.22 27.02 $25-92$ 24.90 23.96	$\begin{aligned} & 44 \cdot 64 \\ & 42 \cdot 98 \\ & 41 \cdot 42 \\ & 39-97 \\ & 38 \cdot-61 \end{aligned}$	$\begin{gathered} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 45-15 \end{gathered}$	$0-00$ $0-00$ $0-00$ $0-00$ $0-00$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 27 \\ & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0.00 \\ & 0.00 \\ & 0-00 \end{aligned}$	$0-00$ $0-00$ $0-00$ $0-00$ $0-00$	16.58 $15-98$ 1542 14.90 14441	23.09 $22 \cdot 28$ 21.52 $20-81$ $20 \cdot 15$	$37-34$ 3614 3502 $33-96$ 32.96	$\begin{aligned} & 43-97 \\ & 42.66 \\ & 41 \cdot 43 \\ & 40-25 \\ & 39-14 \end{aligned}$	0.00 0.00 0.00 $0-00$ 0.00
$\begin{aligned} & 30 \\ & 35 \\ & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0-00 \\ & 0.00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 0 \cdot 00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	13.96 12.05 0.00 0000	$19-53$ 16.91 14.91 $13-33$	$\begin{aligned} & 32 \cdot 01 \\ & 27 \cdot 99 \\ & 24 \cdot 86 \\ & 22 \cdot 34 \end{aligned}$	$\begin{aligned} & 38 \cdot 08 \\ & 33 \cdot 53 \\ & 299.92 \\ & 26 \cdot 99 \end{aligned}$	000 $38-89$ $34-91$ $31-64$

TABLE 22 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Nors - Zeros indicate inadmissible reinforcenent percentage.

TABLE 23 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$f_{\mathrm{ck}}-15 \mathrm{~N} / \mathrm{mm}_{2}$ $f_{y}=415 \mathrm{~N} / \mathrm{m}^{2}$
Thickness $=22.5 \mathrm{~cm}$

But ${ }^{\text {Brar }}$ (Duneter, mm									
Sracti cm	6	8	10	12	16	18	20	22	75
5	$39-03$	64-59	$0 \cdot 00$	0.00	000	000	0.00	000	0.00
6	32.97	55.24	79-65	0.00	0.00	$0 \cdot 00$	0.00	0.00	0.00
7	$28 \cdot 54$	$48 \cdot 21$	70-37	0.00	$0 \cdot 00$	$0-00$	$0 \cdot 00$	$0 \cdot 00$	000
8	25.15	$42 \cdot 75$	62-96	84.02	$0 \cdot 00$	$0 \cdot 00$	0.00	0.00	000
9	$22 \cdot 48$	$38 \cdot 39$	56.92	$76 \cdot 67$	0.00	0.00	0.00	0.00	0.00
10	20-32	34.83	51-91	70.43	0.00	$0-00$	$0 \cdot 00$	0.00	0.00
11	0.00	31.88	47.71	65.09	$0 \cdot 00$	$0 \cdot 00$	$0 \cdot 00$	$0-00$	000
12	0.00	29.38	4412	6047	000	$0-00$	0.00	0.00	000
13	0.00	27.24	41.03	5645	$0 \cdot 00$	$0-00$	0.00	$0 \cdot 0$	000
14	$0 \cdot 00$	25-40	38.34	52-92	$83 \cdot 48$	$0-00$	0.00	$0 \cdot 00$	0.00
15	0.00	23.78	35-98	49.80	79.20	0.00	0.00	0.00	0.00
16	0.00	$22 \cdot 36$	33-90	47.02	75.31	0.00	0.00	000	000
17	0.00	21.10	32.04	44.54	71.75	0.00	$0 \cdot 00$	000	000
18	0.00	19.98	$30 \cdot 37$	42-29	$68 \cdot 50$	$80-96$	0.00	000	0.00
19	0.00	$0-00$	28.87	$40 \cdot 27$	65-52	$77 \cdot 70$	0.00	000	000
20	0.00	$0-00$	27.50	$38-42$	62.78	7467	000	0.00	0.00
21	0.00	0.00	26.26	$36 \cdot 74$	$60 \cdot 25$	71.85	000	000	$0 \cdot 00$
22	$0 \cdot 00$	000	$25 \cdot 13$	35-19	57.91	69.73	$0 \cdot 00$	000	$0 \cdot 0$
23	$0 \cdot 00$	000	24.09	$33 \cdot 77$	55.74	6677	77.40	$0 \cdot 00$	0.00
24	$0 \cdot 00$	0.00	23-14	32-46	53.73	64.48	74.92	0.00	000
25	0.00	000	22.25	31.25	51.85	62-34	72.59	0.00	000
26	0.00	0.00	21.43	$30 \cdot 12$	50.09	60.32	70-38	0.00	$0 \cdot 00$
27	$0-00$	0.00	20.67	29.08	48.45	5843	$68 \cdot 30$	0-00	$0 \cdot 00$
28	0.00	0.00	19.96	$28 \cdot 10$	46917	56.65	66.33	75-57	000
29	0.00	$0 \cdot 00$	$19 \cdot 30$	$27 \cdot 18$	45.47	54-97	$64 \cdot 46$	73.58	$0-00$
30	0.00	$0 \cdot 00$	000	26.33	44-11	53.39	62.69	71.69	000
35	$0 \cdot 00$	000	0.00	22.74	38-36	46.65	55.08	63-42	0.00 67.93
40	0.00	000	$0-00$	2001	33-93	41.50	49.05	56.79	67.93 61.87
45	$0 \cdot 00$	$0-00$	$0-00$	$0-00$	30-41	37-20	44.24	51/37	61.87

Noti - Zeros indicate Inadmissible reinforcement percentage.

TABLE 24 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Hat

Nort-Zeros indicate inadmissible reinforcement percentage.
$f_{\text {ot }}=15 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{y}=415 \mathrm{~N} / \mathrm{mmm}^{2}$
Thicknoss $=250 \mathrm{~cm}$

TABLE 25 FLEXURE-MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH
$\mathrm{ck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness a 10.0 cm

Ban	Bat Duantite, mm				$\begin{gathered} \text { Bua } \\ \text { Sracano, } \\ \mathrm{cm} \end{gathered}$	Ban Diasersh, mm			
Sracank, cma	6	8	10	12		6	8	10	12
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 921 \\ & 779 \\ & 675 \\ & 596 \end{aligned}$	14.94 12.84 11.24 9.99 9.98	0.00 18.09 1608 14.4 13	$0-00$ $0-00$ $0-00$ $0-00$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	4.25 $4-06$ $3-88$ 3.72 3.57	$\begin{aligned} & 641 \\ & 6-12 \\ & 5 \cdot 86 \\ & 5 \cdot 62 \end{aligned}$	8.84 8.46 $8 \cdot 11$ 778
9	535	898	$13 \cdot 10$	17.27	24	0.00	3.57	5-40	749
10	482	$8 \cdot 16$	11-97	15.93					
11	440	748	11.03	14.77	25	0-00	3-30	5.00	$6 \cdot 21$
12	405	690	$10-21$	1376	27	0.00	$3 \cdot 18$	4 4 9	6.71
13	375	6.40 5497	89.90	12.87	28	0.00	3.07	465	6.49
14					29	0-00	2-97	$4 \cdot 51$	6728
15	$3 \cdot 26$	5.59	${ }^{8} \cdot 36$						
16	3.66	5.26	7.88	10.78	35	-0-00	- 0.00	4.37 3	609 5.26
17	$2 \cdot 89$	4.97 470	745	10.22 9.71	40	$0 \cdot 00$	0.00	$3 \cdot 31$	$4 \cdot 64$
18	- $0 \cdot 0$	474	607	926					

Nors 1-Zeros indicate inadmissible reinforcement percentage.
Nor: 2-Bar spacings below the dividing line exceed $3 d$.

TABLE 26 FLEXURE-MOMENT OF RESISTANCE OF SLABS, kN.m

$$
\begin{aligned}
f_{c \mathrm{k}} & =20 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{T} & =250 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Thickness } & =11.0 \mathrm{~cm}
\end{aligned}
$$

Nors1 - Zeros indieate inadmissible reinforcement percentage.
Nore 2 - Bar spaciags below the dividing line exverd 3d.

TABLE 27 FLEXURE-MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Norse 1 - Zeros indicate inadmissible reinforcement perountage.
Nora 2 - Bar spacings below the dividing line exceed 3 d.

TABLE 28 FLEXURE -MOMENT OF RESISTANCE ${ }_{2}$ OF SLABS, kN.m

Nome 1 - Zeros indicate inadmissible reinforcement percentage.
Norms 2 - Bar spaclags below the dividing line exceed Md.

TABLE 30 FLEXURE-MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$$
\begin{aligned}
f_{\mathrm{ck}} & =20 \mathrm{~N} / \mathrm{mm}^{2} \\
f^{2} & =250 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Thickness } & =15 \cdot \mathrm{~cm}
\end{aligned}
$$

Bax			Bur	mm		
Sencimo, cm	6	8	10	12	16	18
5	$15 \cdot 35$	25.87	37.65	49.46	000	0.00
6	12.92	21.94	323131	$45 \cdot 16$	000	-
?	11.15	116.04	${ }_{25 \cdot 11}^{28 \cdot 27}$	$34 \cdot 19$	300	0.00
9	8.75	15.05	$22 \cdot 58$	30-93	0.00	0.00
10	790	13.62	$20-51$	28.22	44.04	0 -00
11	7-20	12.44	18.39	2495	${ }^{5} 5$	4.4 .4
12	661	${ }^{110.60}$	17.33 16.08	22.33	35.83	41.88
13	000	${ }_{9} 97$	1499		33.71	39.58
15	0.00	9.24	14.05	19.59	${ }^{31-81}$	37-50
16	0.00	8	13.21	18.46	${ }_{20}^{30-11}$	39.61
17	-0.00	7.74	11.81	16.54	27.19	32-34
18 19	0.00	7.34	11.22	1573	2593	30-91
20	$0-00$	6.98	10.68	1499	26.78	20.50
21	$0 \cdot 0$	6.66	10-19	1431	23.72	28.39
22	000	6.36	9.74	13.69	22.75	26,28
23	000	0.00	8.13	13.13	${ }^{21.86}$	${ }_{25} 26$
24	000	0.00	8.96	1261		
25	000	$0 \cdot 00$	8.61	${ }^{12} 12.13$	20-25	24-59
27	0.00 0.00	-0.00	8799	1.127	1888	22.78
28	$0-00$	$0 \cdot 0$	771	${ }^{10-58}$	18.26	22-05
29	$0 \cdot 60$	000	745	10-52	17-68	21.3
30	000	0.00	7:21	10.18	17.13	1800
35	0-00	900	000	771	1308	15.91
45	000	0.00	000	$6 \cdot 88$	11.69	14.2

Nors 1 -Zeros indicato inadmissible reinforeement percentage.
Nors 2-Bar spacings below the dividing line exoted M .

TABLE 31 FLEXURE-MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

							$\begin{aligned} & V / \mathrm{mm}^{2} \\ & / \mathrm{mm}^{2} \\ & \mathrm{~cm} \end{aligned}$
Bal				chatter			
SPACRNG, em	5	8	10	12	16	18	20
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 18 \cdot 43 \\ & 15 \cdot 48 \\ & 13 \cdot 34 \\ & 11.72 \\ & 1045 \end{aligned}$	$\begin{aligned} & 91-33 \\ & 26.49 \\ & 22.94 \\ & 20.23 \\ & 1809 \end{aligned}$	$\begin{aligned} & \mathbf{4 6 - 1 9} \\ & 39-43 \\ & 34.37 \\ & 30-45 \\ & 27 \cdot 33 \end{aligned}$	$\begin{aligned} & 61 \cdot 76 \\ & 53 \cdot 40 \\ & 46 \cdot 96 \\ & 41.87 \\ & 37.76 \end{aligned}$	$\begin{array}{r} 0.00 \\ 0.00 \\ 0.00 \\ 65.25 \\ 59.71 \end{array}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 9 \cdot 43 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 1636 \\ & 14.93 \\ & 13.73 \\ & 1270 \\ & 11.82 \end{aligned}$	$\begin{aligned} & 24-78 \\ & 22-57 \\ & 20-88 \\ & 19-35 \\ & 1804 \end{aligned}$	$\begin{aligned} & 14.37 \\ & 31-53 \\ & 29.13 \\ & 2706 \\ & 25.26 \end{aligned}$	$\begin{aligned} & 5495 \\ & 30-58 \\ & 47-34 \\ & 44.24 \\ & 41-51 \end{aligned}$	$\begin{aligned} & 6419 \\ & 5982 \\ & 55 \cdot 95 \\ & 52.52 \\ & 49 \cdot 46 \end{aligned}$	$\begin{array}{r} 0.00 \\ 0.00 \\ 0.00 \\ 60.23 \\ 56.99 \end{array}$
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{gathered} 11.06 \\ 10.38 \\ 9.79 \\ 9.26 \\ 8.78 \end{gathered}$	$\begin{aligned} & 16 \cdot 89 \\ & 15.88 \\ & 1498 \\ & 14.98 \\ & 13-46 \end{aligned}$	$\begin{aligned} & 23 \cdot 69 \\ & \frac{2.30}{21.06} \\ & 1996 \\ & 1896 \end{aligned}$	$\begin{aligned} & 3909 \\ & 36-94 \\ & 3500 \\ & 33-26 \\ & 31-68 \end{aligned}$	$\begin{aligned} & 45 \cdot 72 \\ & 46.26 \\ & 4204 \\ & 40.03 \\ & 35 \cdot 19 \end{aligned}$	$\begin{aligned} & 54.04 \\ & 51.57 \\ & 48 \cdot 93 \\ & 46 \cdot 70 \\ & 44.66 \end{aligned}$
$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0.00 \\ & 0.00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 12 \cdot 81 \\ & 12.72 \\ & 11 \cdot 68 \\ & 11.19 \\ & 10.73 \end{aligned}$	$\begin{aligned} & 18.06 \\ & 17.24 \\ & 1649 \\ & 15.80 \\ & 15 \cdot 17 \end{aligned}$	$\begin{aligned} & 30 \cdot 24 \\ & 2 k \cdot 03 \\ & 27.72 \\ & 26 \cdot 61 \\ & 26.58 \end{aligned}$	$\begin{aligned} & 36 \cdot 52 \\ & 34 \cdot 98 \\ & 33.56 \\ & 32.25 \\ & 31.04 \end{aligned}$	$\begin{aligned} & 42 \cdot 78 \\ & 41.05 \\ & 39-45 \\ & 37.06 \\ & 36.58 \end{aligned}$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0.00 \\ & 0-00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{gathered} 10-32 \\ 9.93 \\ 9 \cdot 57 \\ 9.24 \\ 8 \cdot 93 \end{gathered}$	$\begin{aligned} & 14.59 \\ & 1405 \\ & 13.54 \\ & 13.08 \\ & 12.64 \end{aligned}$	$\begin{aligned} & 24 \cdot 63 \\ & 23.75 \\ & 22.93 \\ & 22.16 \\ & 21.45 \end{aligned}$	$\begin{aligned} & 29 \cdot 92 \\ & 28 \cdot 87 \\ & 27-90 \\ & 26 \cdot 99 \\ & 26 \cdot 13 \end{aligned}$	$\begin{aligned} & 35 \cdot 30 \\ & 34.10 \\ & 32.99 \\ & 31.93 \\ & 30 \cdot 94 \end{aligned}$
$\begin{aligned} & 30 \\ & 35 \\ & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0000 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0 \sim 00 \end{aligned}$	$\begin{gathered} 12 \cdot 23 \\ 10.53 \\ 9.25 \\ 0.00 \end{gathered}$	$\begin{aligned} & 20 \cdot 77 \\ & 17.96 \\ & 15 \cdot 81 \\ & 14 \cdot 12 \end{aligned}$	$\begin{aligned} & 25 \cdot 33 \\ & 21.95 \\ & 19.36 \\ & 17.32 \end{aligned}$	$\begin{aligned} & 30.02 \\ & 26.09 \\ & 23.07 \\ & 20.63 \end{aligned}$

Nore - Zeros ibdicate inadmissible reinforcement persentage.

TABLE 32 FLEXURE-MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$\mathrm{fok}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$
Thieknest $-30-0 \mathrm{~cm}$

Bar Dianetrs, mm									
$\begin{gathered} \text { Spacim } \\ \text { cm } \end{gathered}$	6	8	10	12	16	18	20	22	25
5	21.50	$36-60$	$54 \cdot 73$	74.05	0.00	$0-00$	0.00	0.00	0.00
6	18.04	31.05	46.54	$63 \cdot 65$	$0 \cdot 00$	000	0.00	$0 \cdot 0$	0.00
7	15-54	26.85	40-47	$55-74$	87.37	0.00	0-00	000	0.00
8	13.64	2365	3578	49.55	$78 \cdot 91$	0.00	0.00	0.00	0.00
9	12.16	21.12	3207	44-59	71.85	8451	0.00	0.60	0.00
10	000	1909	29.05	40.52	$65 \cdot 39$	7802	$0 \cdot 00$	0.00	000
11	000	17.41	26.55	$37 \cdot 12$	$60-31$	72.39	$83 \cdot 28$	0.00	0.00
12	000	1600	2444	4225	5674	67.47	78.04	$0 \cdot 00$	000
13	$0-00$	1481	22.64	31.79	52-64	$63 \cdot 16$	$73 \cdot 36$	$82 \cdot 81$	0.00
14	0.00	13.78	21.09	29.65	49.32	59.34	69.18	78.44	0-00
15	0.00	12.88	1974	27.79	$46 \cdot 38$	55.94	65.42	7447	0.00
16	0.00	1209	18.55	26.14	$43 \cdot 77$	$52 \cdot 91$	62.04	70.4	000
17	$0 \cdot 0$	$0 \cdot 0$	17.50	2468	41.43	S0.18	5897	67.51	000
19	0.00	0.00	16.55	23.37	39.33	47.71	56.18	64.49	7603
19	0.00	060	1571	22-20	37-43	4597	53.64	61^{-70}	73.04
20	0.00	0.00	14.95	21.13	35.70	43143	$51 \cdot 31$	59.14	$70 \cdot 25$
21	$0-90$	0-00	1425	20.17	34.13	41.56	49.18	56.77	$67 \cdot 66$
22	$0 \cdot 00$	000	$13 \cdot 62$	19.25	32169	3985	4721	54.58	65.23
23	$0-00$	000	13.04	1847	$31 \cdot 36$ $30 \cdot 14$	38.27 3681	$45 \cdot 39$	52.54 50.65	$62-96$ 60.81
24	0.00	000	12-51	17.73	$30 \cdot 14$	3681			
	000	$0-00$	12.02	1705	29-01	3545	$42 \cdot 13$	48.89	56.84
26	000	000	1157	1641	27.95	34-19	$40 \cdot 67$	47.24	\$6.96
27	0000	000	000	$15 \cdot 88$	26-98	33.02	$35 \cdot 30$	4572	$55 \cdot 30$
28	000	000	000	1527	26.07	3192	38.03	44.25	$53 \cdot 34$
29	0.00	0.00	000	1476	$25 \cdot 21$	$30 \cdot 90$	36.83	42-90	51-97
30	0.00	000	0.00	14.28	24.42	29.94	35.71	41.62	50-49
35	0.00	000	$0-00$	12.29	21.08	25-0	10-97	36.21	4417
40	0.00	0.00	0.00	000	18,54	2282	27.34	${ }^{32} 88.04$	$39 \cdot 24$ $35-79$
45	0.00	000	000	000	16.55	$20 \cdot 39$	24.47	28.72	35-29

TABLE-33 FLEXURE-MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH
22.5
$f_{\mathrm{a}}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{f}=250 \mathrm{~N} / \mathrm{mm}^{2}$
Thisknems - $22-5 \mathrm{~cm}$

TABLE 34 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m

$$
\begin{aligned}
f_{0} & =20 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{Y} & =250 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Thicknem } & =250 \mathrm{~cm}
\end{aligned}
$$

TABLE 35 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$$
\begin{aligned}
f_{\mathrm{ex}} & =20 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{y} & =415 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Thickness } & =10.0 \mathrm{~cm}
\end{aligned}
$$

Bax	Bar Dunerek, mm				BarSpacino, cm	Bur Duarter, mm			
$\begin{aligned} & \text { Srıcip } \\ & \text { cm } \end{aligned}$	6	8	10	12		6	8	10	12
5	14.33	$0 \cdot 00$	0.00	0.00	20	403	6.87	10-18	$13 \cdot 72$
6	12.27	000	$0 \cdot 00$	$0-00$	21	3.85	657	974	$13 \cdot 17$
7	10.72	$17 \cdot 11$	$0 \cdot 00$	$0-00$	22	3 -68	6.29	935	12.67
8	9-52	15\%40	$0 \cdot 00$	0.00	23	3.52	603	895	12-20
9	855	13-98	$0 \cdot 00$	0.00	24	0.00	5.79	$8 \cdot 64$	1176
10	771	1279	000	0.00		$0-60$	5.57	833	
11	711	11.79	16.78	0.00	26	000	$5 \cdot 37$	803	10-98
12	6.55	1092	$15 \cdot 67$	0.00	27	000	$5 \cdot 18$	7.76	$10^{\circ} 62$
13	608	$10 \cdot 18$	14.70	0.00	28	000	500	$7 \cdot 51$	10.29
14	$5 \cdot 67$	9.52	$13 \cdot 83$	0.00	29	0.00	4.84	$7 \cdot 27$	9-97
15	$5 \cdot 31$	8.95	13.05	17.22			$4 \cdot 69$		
16	4.99	8.44	12.36	$16 \cdot 39$	15	$0-00$	4.94	6.10	$8 \cdot 43$
17	4.71 4.46	7.99 7.58	${ }_{11}^{11.73}$	15.64 14.94	40	000	3.55	5-38	7.46
18	$4 \cdot 64$	721	10.65	14.30					

Nors 1 -Zeroa indicate inadmiasible relinforcement percentage.
Nore 2 - Bar spacings below the dividing line exceed $3 d$.

TABLE 36 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m
PER METRE WIDTH

[^3]
TABLE 37 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$$
\begin{aligned}
f_{e k} & =20 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{y} & =415 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Thickness } & =12.0 \mathrm{~cm}
\end{aligned}
$$

Nors 1 - Zeras indicate inadmissible reinforcement percentage.
Nore 2 - Bar spacings below the dividing lise exceed 3d.

TABLE 38 FLEXURE-MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

f_{cz}	$=20 \mathrm{~N} / \mathrm{mma}^{2}$
f_{y}	$=415 \mathrm{~N} / \mathrm{man}^{2}$
Thickness	$=13.0 \mathrm{~cm}^{2}$

Bas	Har Dumitr, mon				
spacino. cm	5	8	10	12	16
20	0.00	9.59	14.43	1984	30-85
21	0.00	$9 \cdot 16$	1379	$19-00$	29.73
22	$0-00$	8.76	$13 \cdot 21$	1823	28.67
23	000	8.39	12.08	17.52	27.69
24	000	8.06	12.18	16.87	2677
25	0.00	775	11.73	16.25	25-90
26	0.00	746	$11 \cdot 30$	15.69	25.08
27	0.00	720	1091	$15 \cdot 16$	$24 \cdot 31$
28	$0 \cdot 00$	695	$10-54$	14.66	23-59
29	000	6.72	1020	1420	2290
30	0.00	650	9.88	1376	22'26
35	0.00	000	8.53	1192	19.49
40	000	000	7.50	10.52	17.33
45	$0-00$	000	670	941	15.59

Nors I - Zeros indicate inadmissible reinforcement percentage.
Nots 2 - Bar spacings below the dividing line exceed 3d.

TABLE 39 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Bak Ban Dunarise, mm								Hun Deanerra, mm			
$\begin{gathered} \text { Bracing, } \\ \text { cms } \end{gathered}$		8	10	12	16	$\begin{gathered} \text { Bax } \\ \text { Spacino, } \\ \mathrm{em} \end{gathered}$		8	10	12	16
5	22:49	3629	$0 \cdot 00$	000	000	20	0.00	10-50	1578	21.7	34.48
6	19.08	31.30	$0 \cdot 00$	$0 \cdot 0$	$0 \cdot 00$	21	0.00	10.02	15.14	20.95	$33 \cdot 18$
7	16.56	27-45	$39^{\prime} 12$	0-00	0.00	22	$0 \cdot 0$	9.58	14.50	2009	31.97
8	14.62	2447	$35 \cdot 26$	0.00	0.00	23	$0 \cdot 0$	$9-18$	1391	19.30	$30 \cdot 84$
9	13.09	22.04	32.06	0.00	0.00	24	0.00	$8 \cdot 82$	13.37	18.57	2979
10	11.85	$20-05$	29.37	38.94	000	25	0.00	$8 \cdot 48$	12-85	17.89	28-80
11	$10 \cdot 82$	1838	27.08	36.20	000	26	0.00	$8 \cdot 16$	12.39	17.26	27.87
12	976	1697	$25 \cdot 12$	33.79	$0-\infty$	27	$0 \cdot 00$	$7 \cdot 87$	11.96	16.67	2700
13	9.22	15.76	23.42	$31-67$	$0 \cdot 00$	28	0.00	$7 \cdot 60$	11.55	$16 \cdot 12$	2518
14	8458	1471	21.93	29.78	0.00	29	0.00	7.34	11.18	$15 \cdot 60$	2541
15	$8 \cdot 03$	$13 \cdot 79$	20.61	28.10	0.00						
16	7.55	12.98	19.44	26.60	$0 \cdot 0$	35	$0 \cdot 00$	$0 \cdot 00$	9.34	1309	21.56
17	0.00	$12 \cdot 23$	18.40	25-24	000	3			934	1309	21.56
18	0.00	11.61	$17 \cdot 46$	2401	0.00	40	0.00	0.00	$8 \cdot 21$	11-54	19.14
19	$0-00$	1103	16661	$22 \cdot 90$	$35 \cdot 87$	45	$0 \cdot 00$	$0 \cdot 00$	$7 \cdot 33$	1032	17.20

Norn 1 - Zeros indlcate inadmissible reinforcement percentage.
Notr: 2 - Bat spacings below the dividing line exceed $3 d$.

TABLE 40 FLEXURE-MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Sfacnvo, cm					$\begin{aligned} f_{\mathrm{kg}} & =20 \mathrm{~N} / \mathrm{mmz} \\ f_{y} & =415 \mathrm{~N} / \mathrm{mm}{ }^{2} \\ \text { Thickness } & =15.0 \mathrm{~cm}\end{aligned}$	
	Bak Diameter, min					
	6	8	10	12	16	18
	24.53	39.92	0.00	0.00	000	$0-00$
6	$20-28$	3-33	0.00	0.00	000	000
7	18.01	30.07	43-16	$0 \cdot 00$	0.00	$0 \cdot 00$
-	1590	26.73	36-50	0.00	$0 \cdot 00$	0-00
9	1422	24.06	35.21	0.00	000	000
10	12.87	21.86	32.20	4303	$0 \cdot 00$	0.00
11	11.75	20.03	29.66	39.91	$0 \cdot 00$	000
12	10 Bl	18.48	27-48	37.19	0.00	000
13	10.00	17.15	$25 \cdot 60$	34,60	$0 \cdot 00$	000
14	$9 \cdot 31$	16.00	23.95	12\%	0.00	$0 \cdot 00$
15	8.71	1500	$22 \cdot 50$			0.00
16	000	14.11	21.22	29.15	$0 \cdot 00$	$0-0$
17	0.00	13.12	30.07	$27 \cdot 64$	43.25	$0 \cdot 00$
18	0.00	12-51	1904	25-28	$41 \cdot 40$	$0-00$
19	0.00	11-98	$18 \cdot 11$	$25-04$	$39 \cdot 69$	$0 \cdot 00$
20	0.00	11.41	17.26	23-92	30.11	$0 \cdot 00$
21	000	10.88	1649	22.89	16.64	0.00
22	0.00	$10-41$	$15 \cdot 79$	21.94	15-27	$41 \cdot 27$
23	0.00	9.97	15.14	21.07	3400	39.90
24	0.00	$9 \cdot 57$	14.55	$30 \cdot 27$	32-31	$38 \cdot 60$
25	$0-\infty$	9-20				
26	0.00	8-86	$13 \cdot 48$	18-37	30.66	1624
27	0.00	8-54	1301	18.18	29.69	35.15
28	0.00	000	12.57	17.58	25.77	$34 \cdot 13$
29	000	000	$12 \cdot 15$	1701	27.91	$33 \cdot 16$
30	000	0.00	11.77	16.48	2709	$32 \cdot 24$
35	000	000	$10 \cdot 15$	1426	23.64	$28 \cdot 29$
40	000	000	8.92	12.56	20.95	$25 \cdot 19$
45	0.00	000	$0 \cdot 00$	11.22	18-81	37.69

Nore 1 - Zeros indicate inadmissible reinforsement percentage.
Nore 2 - Bar spacings below the dividing line exceed 3 d .

TABLE 41 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

	, Bak Duaneter, mm						
$\underset{\mathrm{cm}}{\text { Spacino, }}$							
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 29.63 \\ & 25.03 \\ & 21.66 \\ & 19.08 \\ & 17.06 \end{aligned}$	$\begin{aligned} & 48 \cdot 99 \\ & 41.88 \\ & 36-55 \\ & 32.40 \\ & 29.09 \end{aligned}$	$\begin{array}{r} 000 \\ 60.13 \\ 53-29 \\ 47.66 \\ 4508 \end{array}$	$\begin{array}{r} 0.00 \\ 0000 \\ 0000 \\ 63.53 \\ 57.95 \end{array}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	000 000 000 000 000
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{gathered} 15 \cdot 42 \\ 14.07 \\ 12.93 \\ 11.97 \\ 0.00 \end{gathered}$	$\begin{aligned} & 26 \cdot 40 \\ & 24 \cdot 15 \\ & 22 \cdot 26 \\ & 20.64 \\ & 19 \cdot 24 \end{aligned}$	$\begin{aligned} & 39 \cdot 29 \\ & 36 \cdot 10 \\ & 33 \cdot 39 \\ & 31.05 \\ & 29.01 \end{aligned}$	$\begin{aligned} & 53 \cdot 23 \\ & 49-18 \\ & 45 \cdot 69 \\ & 42.65 \\ & 3998 \end{aligned}$	$\begin{array}{r} 0.00 \\ 0.00 \\ 0.00 \\ 000 \\ 627.74 \end{array}$	$\begin{aligned} & 0-00 \\ & 000 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00 000 000 000 0000
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 18-02 \\ & 1694 \\ & 15-99 \\ & 15.13 \\ & 14.37 \end{aligned}$	$\begin{aligned} & 27 \cdot 22 \\ & 25 \cdot 64 \\ & 26 \cdot 24 \\ & 22 \cdot 97 \\ & 21-84 \end{aligned}$	$\begin{aligned} & 37 \cdot 62 \\ & 35 \cdot 52 \\ & 33.64 \\ & 31.95 \\ & 10 \cdot 41 \end{aligned}$	$\begin{aligned} & 59.52 \\ & 56.59 \\ & 5392 \\ & 51.48 \\ & 49.24 \end{aligned}$	$\begin{gathered} 0-60 \\ 0-00 \\ 0.00 \\ 00.47 \\ 58.03 \end{gathered}$	000 0000 0000 0000 $0-00$
$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{gathered} 13 \cdot 67 \\ 13.04 \\ 1247 \\ 11.94 \\ 0.00 \end{gathered}$	$\begin{aligned} & 2081 \\ & 19.87 \\ & 19.01 \\ & 18.22 \\ & 17.50 \end{aligned}$	29.02 2775 2658 25.51 24.52	$\begin{aligned} & 47-18 \\ & 45 \cdot 27 \\ & 43.52 \\ & 41.89 \\ & 40-17 \end{aligned}$	$\begin{aligned} & 55 \cdot 77 \\ & 53 \cdot 67 \\ & 51 \cdot 71 \\ & 49.88 \\ & 48 \cdot 17 \end{aligned}$	$0-00$ 000 000 5743 55.60
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \\ & 000 \\ & 000 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0 \cdot 00 \\ & 0-00 \end{aligned}$	$\begin{aligned} & 16.83 \\ & 1621 \\ & 1563 \\ & 15.10 \\ & 14.60 \end{aligned}$	$\begin{aligned} & 21 \cdot 60 \\ & 22 \cdot 75 \\ & 21 \cdot 96 \\ & 21 \cdot .22 \\ & 20 \cdot 53 \end{aligned}$	$\begin{aligned} & 38 \cdot 96 \\ & 37 \cdot 64 \\ & 36 \cdot 41 \\ & 35 \cdot 25 \\ & 3 \cdot 16 \end{aligned}$	$\begin{aligned} & 46 \cdot 57 \\ & 45 \cdot 07 \\ & 43.65 \\ & 42 \cdot 12 \\ & 41.07 \end{aligned}$	51.87 52.24 50.70 49.24 47.86
$\begin{aligned} & 30 \\ & 35 \\ & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0-00 \\ & 0-00 \\ & 0-00 \\ & 0-00 \end{aligned}$	$\begin{array}{r} 1413 \\ 12 \cdot 17 \\ 000 \\ 0-00 \end{array}$	$19 \cdot 88$ $17 \cdot 17$ 1511 $13 \cdot 49$	$\begin{aligned} & 33 \cdot 14 \\ & 28.82 \\ & 25 \cdot 49 \\ & 22 \cdot 84 \end{aligned}$	$\begin{aligned} & 39 \cdot 69 \\ & 34.65 \\ & 30-99 \\ & 27.80 \end{aligned}$	$\begin{aligned} & 46-54 \\ & 40-91 \\ & 36-46 \\ & 32-86 \end{aligned}$

Notr - Zeros indicate intadmissible reinforcement percentage.

TABLE 42 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Bak mar Dinneter, mm									
$\begin{aligned} & \text { Sricne } \\ & \mathrm{cm} \end{aligned}$, 6	8	10	12	16	18	20	22	25
5				0.00	0.00	0.00	000	0.00	000
6	29-28	49.44	$72 \cdot 14$	000	$0-0$	0.0	000	$0-\infty$	000
7	25-30	43.02	63-41	8472	000	000	000	$0-00$	0.00
8	22-27	$38 \cdot 07$	56.52	76-28	0.00	000	$0 \cdot 00$	000	0.00
9	$19 \cdot 89$	34.13	50.96	6929	000	0.00	000	0.00	000
10	17.97	30.93	$46 \cdot 38$	63.43	0.00	000	000	$0 \cdot 0$	0.00
11	16.38	$28 \cdot 28$	42.54	58.46	$0-00$	000	000	000	000
12	$0 \cdot 0$	26.04	$39 \cdot 29$	5420	$85-29$	000	000	$0 \cdot 0$	000
13	0-00	24.13	$36 \cdot 50$	50-50	80.23	000	000	000	000
14	$0-00$	22-48	34.07	47.27	75-70	000	000	$0-00$	0.00
	0-00	21.04	31.95	4443	71.8	$0 \cdot 60$	$0-00$	$0 \cdot 00$	0.00
16	$0-00$	1978	30.07	41.90	67.93	80.26	000	000	000
17	0.00	18.65	28.40	3964	64.59	7659	000	000	000
18	0.00	17.65	26.91	37.62	$61-56$	73.22	000	$0 \cdot 0$	000
19	$0-00$	1675	25.57	$35 \cdot 78$	5879	70-12	0.00	000	000
20	000	15-94	24.35	3412	56.25	67.25	71.80	$0 \cdot 00$	000
21	000	000	23.24	$32 \cdot 61$	$53-91$	$64-60$	74.94	0.00	000
21	$0 \cdot 00$	$0-00$	22.23	$31 \cdot 2$	$51-76$	62-15	72.26	000	000
23	$0 \cdot 00$	0-0	21.30	2994	4977	5986	67.76	$0 \cdot 00$	000
24	$0 \cdot 00$	$0-90$	$20-45$	28.77	4793	57.74	67.41	7658	000
25	$0-00$	$0-00$	19.66	27.68	$46 \cdot 21$	55.75	65721	74.24	0.00
26	000	$0-00$	$18 \cdot 94$	2667	44.62	53.8	$63 \cdot 14$	72.03	0.00
27	000	0.00	$18 \cdot 25$	25.74	$43 \cdot 12$	$52 \cdot 16$	61.19	$69-93$	$0 \cdot 0$
28	0.00	0.00	17.53	$24-86$	4173	50.52	50.36	6795	$0 \cdot 00$
29	0.00	0.00	17.04	24.05	$40 \cdot 42$	48.99	5763	6507	$0 \cdot 00$
	$0 \cdot 00$	$0-00$	16.49	2328	39.19	47.54	55-99	6425	0.00
35	000	$0-00$	000	20.99	3400	41.41	49.60	50.58	67.44
40	$0 \cdot 00$	$0 \cdot 00$	000	17.66	30.02	36.67	$43 \cdot 54$	50.48	60.63
45	0.00	0.00	000	15.76	26.88	$32 \cdot 90$	39.16	$45 \cdot 54$	55.01

Noris - Zeros isidieate Inadmisible relnforcement percentsge.

TABLE 43 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

$$
\begin{gathered}
f_{c}=20 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}
\end{gathered}
$$

Thicknes $=22 \cdot 5 \mathrm{~cm}$

Nors - Zeros indicate inadmiudible reinforcement perventsge.

TABLE 44 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m PER METRE WIDTH

Nors-Zeres indicate Inadmisuible reinforcement percentage.

TABLE 45 FLEXURE - REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

$f_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mam}^{3}$
$f=250 \mathrm{~N} / \mathrm{mm}^{3}$

	$d^{\prime} / d=0.05$		$d^{\prime} / d=0 \cdot 10$		$d^{\prime} / d=0.15$		$ه^{\prime} / \mathrm{d}=0 \cdot 20$	
$\mathrm{N} / \mathrm{mm}^{2}$	P_{1}	$P_{\text {c }}$	P_{t}	P_{c}	P_{k}	P_{6}	P_{1}	$P_{\text {c }}$
2-24	1.322	0.002	1.322	0.003	1.323	0.003	[-323	$0 \cdot 003$
$2 \cdot 25$	1.327	0.007	1-328	0.008	1328	0008	$1 \cdot 328$	0009
$2 \cdot 30$	1.351	0032	1.353	0.034	1-355	0.036	1.357	0039
$2 \cdot 35$	1.376	0057	1.379	0.061	1.392	0.004	1.385	0068
240	1.400	0-052	1.404	9.087	1.409	0.092	1415	0098
24.45	1.424	0-107	1430	$0 \cdot 113$	1.436	$0 \cdot 120$	1.43	$0 \cdot 128$
2.50	1448	0.132	1455	$0 \cdot 140$	$1 \cdot 463$	0.148	1472	0.157
2.55	1.472	$0 \cdot 157$	1481	$0 \cdot 166$	1490	0.176	I-501	$0 \cdot 187$
$2 \cdot 60$	1.497	$0 \cdot 112$	1-596	0-192	1.517	0.204	1.530	0217
$2 \cdot 65$	1.521	0-207	1.572	0.219	1.544	0.232	1.558	0.246
2.70					1.571			
2.75	1.569	0.257	1.583	0.272	1.599	0.288	1.616	0-305
$2 \cdot 80$	1-903	0.292	1.609	0.298	1.626	$0 \cdot 315$	1.645	0-335
$2 \cdot 85$	1618	0.307	1.634	0.324	1.653	0.443	1.673	0.355
2-90	1.642	0.332	1.660	0-351	1.680	0.371	1.702	$0 \cdot 394$
295	1.666	0.357	1.685	$0 \cdot 377$	1707	0-399	1731	0.424
300	1.690	0.382	1.711	$0-403$	1.734	0427	1760	0.45
3.05	1714	0.407	1736	$0 \cdot 430$	1.761	0455	1.788	$0-433$
$3 \cdot 10$	1739	0432	$1-762$	0.456	1-788	0483	$1 \cdot 817$	$0-513$
3-15	1.763	0.457	1-788	0485	1815	0.511	1.846	0.543
$3 \cdot 20$	1.787	0.482	1-813	0.509	1-842	0-539	1.875	
$3 \cdot 25$	1.811	$0 \cdot 507$	$1 \cdot 839$	0.535	1.869	0-567	$1-903$	0.602
$3 \cdot 30$	1835	0.532	1864	0-562	1-896	0-595	1932	0-632
$3 \cdot 35$	1.880	0.557	1.890	0-588	1.923	$0 \cdot 623$	1-961	0-461
340	$1 \cdot 884$	$0 \cdot 582$	1915	$0 \cdot 614$	1950	$0 \cdot 650$	1990	0-691
3.45	1.908	0.607						
$3 \cdot 50$	1.932	0.632	1-966	0.667	$2-004$	0.706	2047	$0 \cdot 750$
3.55	1.957	0.657	1.992	$0 \cdot 693$	2031	0.734	2076	$0 \cdot 780$
3.60	1997	$0 \cdot 682$	2.018	0.720	2059	0-762	$2 \cdot 105$	0-810
$3 \cdot 65$	2005	0707	$2 \cdot 043$	0.746	2.086	0-790	$2 \cdot 133$	$0 \cdot 639$
3.70	2.029	0.712	2.069	0.773	$2 \cdot 113$			
375	2.053	0.757	2.094	0.799	2-140	0.846	2-191	0.899
3.60 3.85	2-078	- 0382	2-120	0.825	2167	0874	2.220	0×238
3.85 300	${ }_{2}^{2-102}$	$0 \cdot 807$	2.145	0.852	$2 \cdot 194$	0902	$2 \cdot 243$	0.958
390	2-125	$0-832$	2.171	0-878	$2 \cdot 221$	0-910	$2 \cdot 27$	0988
$3-95$	2.150	0-857	$2 \cdot 196$					
400	$2 \cdot 174$	$0-832$	$2 \cdot 222$	$0-931$	2.275	$0-985$	2.35	1.047
405	2.199	0-907	2.248	0-957	2.302	1.013	2,361	1.07
410 415	$2 \cdot 223$ $2 \cdot 247$	0.932 0.957	2.273 2.299	0.983	2.329	1.041	2.392	1-106
415	2247	0.957	2:299	1010	$2 \cdot 396$	1009	2421	1-136
420	2271	0.982	$2 \cdot 324$	1.036				
425 $4 * 0$	$2 \cdot 296$ 2.350	1007	2.350	1.063	2.410 2.437	1.125	2478	1-195
430 4.35	2.330	1.032 1.057	2.375	1-069	2437	1-153	2-507	1-225
$4 \cdot 35$ $4 / 40$		1.057 1.052	2.401	${ }_{\substack{1.115 \\ 1.142}}$	$2 \cdot 464$	$1 \cdot 189$	2 z 56	1-255
4.0	296	1082	2.426	$1 \cdot 142$	2,491	1209	2-565	1-284

TABLE 46 FLEXURE - REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

$$
\begin{aligned}
f_{\mathrm{t}} & =20 \mathrm{~N} / \mathrm{mma}^{\mathrm{a}} \\
f_{y} & =250 \mathrm{~N} / \mathrm{mm}^{3}
\end{aligned}
$$

	$d^{\prime} / d=005$		$d^{1} / d=0.10$		$d^{\prime} / \mathrm{d}=0.15$		$d^{*} / d=0.20$	
$\mathrm{N} / \mathrm{mm}^{3}$	$\boldsymbol{P}_{\mathbf{I}}$	$P_{\text {a }}$	P	$\boldsymbol{P}_{\text {z }}$	P_{1}	$\boldsymbol{P}_{\text {c }}$	$\mathrm{P}_{\mathbf{z}}$	P_{8}
299	1765	0005	1765	0005	1765	00006	17766	0006
300	1.769	0010	1770	0011	1771	0011	1771	0012
305	1794	0035	1796	$0-037$	1798	0039	1400	0.092
$3 \cdot 10$	1-818	0061	$1 \cdot 821$	0.064	1825	0.068	1.829	$0-072$
$3 \cdot 15$	1.842	00086	1.847	0091	1.652	0096	17858	$0 \cdot 102$
$3 \cdot 20$	1866	$0 \cdot 111$	1.872	0.117	1.879	$0 \cdot 124$	1-886	0.132
$3 \cdot 25$	1.891	0.136	1.898	0.144	1.906	$0 \cdot 152$	1-915	$0 \cdot 162$
$3 \cdot 30$	1915	$0 \cdot 162$	1.923	$0 \cdot 171$	1.933	$0-181$	1.944	0-192
$3 \cdot 35$	1939	$0 \cdot 187$	1-949	$0 \cdot 197$	1960	0-209	1-973	0-222
340	1963	0.212	1.974	0224	1.987	0-237	2-601	0.252
345	1.997	0.237	2.000	0250	2.014	0-265	2.030	0282
$3 \cdot 50$	2012	0.263	2.026	$0 \cdot 277$	2041	0-293	2.059	0.312
$3 \cdot 55$	2036	0-288	2.051	$0-304$	2068	0-322	$2 \cdot 088$	0.342
3.60	2000	$0 \cdot 313$	$2 \cdot 077$	$0 \cdot 330$	2.095	0-350	$2 \cdot 116$	0.372
$3 \cdot 65$	2084	0.338	2102	0357	2122	0-378	2-145	0402
3.70	$2 \cdot 108$	0.364	$2 \cdot 128$	0.384	2-149	0-406	2-174	0.432
375	2.133	0-339	2.153	0.410	2-177	0-434	$2-203$	$0 \cdot 462$
$3-80$	$2 \cdot 157$	$0 \cdot 414$	2.179	$0 \cdot 437$	$2 \cdot 204$	0-463	2-231	0.492
$3 \cdot 85$	2'181	0439	2204	$00^{4} 464$	2-231	0491	2-260	$0 \cdot 522$
$3-90$	$2 \cdot 205$	$0 \cdot 454$	2230	$0 \cdot 490$	2258	0.519	2288	0.552
3.95	$2 \cdot 299$	0-490	$2 \cdot 256$	0-517	2.285	0.547	$2 \cdot 318$	0-582
400	2.254	0.515	$2 \cdot 281$	0-544	$2 \cdot 312$	0.576	2.346	0.612
405	2275	$0 \cdot 540$	2.307	0.570	2.339	0.604	2.375	0.642
410	2.302	0.565	2-332	0.597	2.366	0.632	$2 \cdot 404$	0.672
$4 \cdot 15$	2,326	0.591	$2 \cdot 358$	$0 \cdot 624$	$2 \cdot 393$	0.660	24333	$0 \cdot 701$
420	2.351	0.616	2-383	0.650	2.420	0-688	2-461	
$4 \cdot 25$	2.375	$0 \cdot 641$	$2-409$	0.677	2447	0.717	2.450	$0 \cdot 761$
430	2.399	0.666	2.434	0.703	2.474	0.745	2.519	0.791
4.35	2.423	0.692	2480	0730	$2 \cdot 501$	0.773	$2 \cdot 548$	0.821
440	2.447	0.717	2486	0.757	2.528	0-801	$2 \cdot 576$	0.851
	2.476	0.743	2-511	0.783	2.535	0-830	2.605	O-881
450	2,496	0.767	2.537	0.810	2.582	0858	2.634	0911
4-55	2.520	0793	2.562	$0 \cdot 837$	2609	0-886	$2 \cdot 663$	0-241
460	2.544	0818	2.588	0.863	2-637	0-914	$2 \cdot 691$	0971
4.65	$2 \cdot 568$	$0 \cdot 643$	$2 \cdot 613$	0-890	2.664	0-942	2.720	1.001
470	2-193	0.868	2.639	0.917	2.691	0-971	2749	1031
475	$2 \cdot 617$	0894	2.664	0-943	$2-718$	0999	2773	1061
$4 \cdot 50$	$2 \cdot 641$	$0-919$	2.690	0-970	2745	1027	2-806	1091
$4 \cdot 85$	$2 \cdot 665$	0941	2.716	0-997	2772	1.055	2835	${ }^{1} 121$
4.90	2.689	096	2.741	$1-293$	24999	$1 \cdot 083$	27864	$1 \cdot 151$
	2-714	0.995	$2 \cdot 767$	$1-050$	2826	1-112	2 2993	$1 \cdot 181$
500	2718	1020	2.792	1077	$2 \cdot 853$	1-140	2921	$1 \cdot 211$
5.05	2.762	1.045	$2 \cdot 818$	$1 \cdot 105$	2.880	$1 \cdot 168$	2950	$1 \cdot 241$
5.10	2-786	1070	243	1.130	2.907	1-195	2979	1-271
5.15	$2 \cdot 811$	1.096	2889	$1 \cdot 157$	2'934	1.225	3008	$1 \cdot 301$

TABLE 47 FLEXURE- REINFORCEMENT PERCENTAGES FOR DOUBLY
REINFORCED SECTIONS

$M_{u} / b^{\text {d }}$,	$d^{\prime} / d=005$		$d^{\prime} / d=0.10$		$d^{\prime} / d=0.15$		$d^{\prime} / d=020$	
$\mathrm{N} / \mathrm{mm}^{3}$	$\mathrm{P}_{\mathbf{H}}$	P_{6}	F_{1}	P_{6}	$\mathrm{F}_{\mathbf{H}}$	P_{c}	P_{1}	$P_{\text {c }}$
3.73	2202	0002	$2 \cdot 202$	0003	2.202	0003		
375	2.212	0013	$2 \cdot 213$	0013	2213	00014	$2 \cdot 214$	$0-0.15$
$3 \cdot 80$	2.236	0008	2.238	0040	2240	0.043	2.243	0.045
3-85	$2 \cdot 260$	0064	2264	0057	2-257	0-071	$2 \cdot 272$	00076
3-90	2284	0069	2.289	0.094	2294	0-100	$2 \cdot 300$	$0 \cdot 106$
$3-95$	$2 \cdot 309$	$0 \cdot 115$	2.315	$0 \cdot 121$	2.322	0.128	2-329	0.136
400	2333	$0 \cdot 140$	2-340	0.148	2.349	$0 \cdot 157$	2-358	0167
405	$2 \cdot 357$	$0 \cdot 166$	$2 \cdot 366$	0.175	$2 \cdot 376$	0-185	2.387	$0 \cdot 197$
410	$2 \cdot 31$	0-191	2.391	0.202	2-403	0.214	2415	0.227
415	2406	0217	2-417	0.229	2 W 30	0.242	$24+4$	0258
420	2430	0.242	2.443	0.256	2-457	0.271	2-473	0-288
425	2454	0268	2468	0283	2494	0.299	2.502	$0-318$
430	2.478	0293	$2 \cdot 494$	0310	2-511	0-328	2.510	0.348
435	2.902	0.319	2.519	0.337	2538	0-336	2-559	$0 \cdot 379$
440	2.527	0.344	2-5.45	0-364	2.565	0-385	2.588	$0 \cdot 409$
445	2.551	0.370	2.570	0.391				
450	2.575	0.395	2.596	$0 \cdot 417$	2.619	0442	$2 \cdot 645$	0470
455	2.599	$0-121$	$2 \cdot 621$	0.44	2.646	$0 \cdot 471$	2.674	0500
460	$2 \cdot 623$	0-447	$2 \cdot 647$	0471	2.673	$0-499$	$2 \cdot 703$	0.530
465	2.646	0-472	2.673	$0 \cdot 495$	2700	$0-528$	2.712	0.561
470	2.672	0.498	2695	0.525	2.727			
475	2.696	0.523	2.724	0.552	2.754	$0-545$	2.789	$0 \cdot 621$
480	$2 \cdot 720$	$0 \cdot 549$	2.749	0.579	2.782	$0-613$	$2 \cdot 818$	0.651
485	$2 \cdot 744$	$0-574$	2775	0605	$2 \cdot 809$	$0-642$	2847	0.682
490			$2 \cdot 800$	0.653	$2 \cdot 836$	0.670	2-875	0.712
			$2 \cdot 826$	$0-680$	2.863	$0 \cdot 699$	2.904	
500	$\begin{aligned} & 2-817 \\ & 2.841 \end{aligned}$	0.651	$2 \cdot 851$	0.687	$2 \cdot 890$	0.727	2.933	0.773
$5 \cdot 5$	- 28418	0.676	2.87 2.903	0714	2.917	0.736	29682	$0 \cdot 803$
515	2850	0-727	2.928	${ }^{0.765}$	2.944	0.784	2.970	0.833
							3019	$0 \cdot 864$
5.20	$2 \cdot 914$	0.753	2.954	0-795				
5.25	2.93	n-778	2075	0.822	3-935	0.070	3077	$0 \cdot 924$
$5 \cdot 30$	2.962	$0 \cdot 804$	3005	0843	3052	0.898	3-105	0.955
5-35	$2 \cdot 987$	0889 0.855	3030	$0-875$	3079	0-927	$3 \cdot 134$	09985
540	3.011	0.855	3056	$0-902$	$3 \cdot 106$	0.955	3163	1015
545	3035	0.880						
5-50	3.059 3.053	0.906	$3 \cdot 107$	0.956	3-160	1.012	3192	
$5-35$ 5.60	3.083 3.108 3	0-931	3.133 3.158	0.983	3.187	1.041	3.249	1.106
$5 \cdot 6$	$3 \cdot 108$ $3 \cdot 132$	0.957 0982	3.158 3.184	1.010	$3 \cdot 214$	1.070	3.278	1-135
565	3132	0982	$3 \cdot 184$	1.037	3.242	1.098	3'307	1-167
5.70	3156	1.008	3209	1.064				
57.7	3180	1093	3235	1091	3-296	1.155	$3 \cdot 364$	1.227
580	3.204	1059	3.260	$1+118$	$3 \cdot 323$	$1-184$	3,393	1.259
5	3.225	1085	3285	$1 \cdot 145$	3.350	$1 \cdot 212$	3422	1.288
590	3253	1110	3311	$1 \cdot 172$	3.372	1.241	3490	1.318

TABLE 48 FLEXURE-REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

$$
\begin{aligned}
& f_{x}=30 \mathrm{~N} / \mathrm{mm}^{8} \\
& f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

	$d^{\prime} / d=0.05$		$d^{\prime} / d=0.10$		$d^{\prime} / d=0.15$		$d^{\prime} / d=0220$	
$\mathrm{N} / \mathrm{mm}^{2}$	P_{1}	P_{4}	P_{t}	P_{8}	P_{1}	P_{e}	P_{4}	P_{e}
448	2645	0.005	2.645	0.005	$2 \cdot 645$	0.006	$2 \cdot 645$	0006
4.50	2654	0015	2.655	0.016	2-656	$0-017$	$2 \cdot 657$	0.018
$4 \cdot 55$	2.678	0.041	2.651	0.043	2-683	0.046	2.686	0.049
460	2-703	0.067	2-706	0-071	2.710	0.075	2.714	0.085
$4 \cdot 65$	2.727	0.093	$2 \cdot 732$	0.098	2.737	$0 \cdot 104$	2-743	$0 \cdot 110$
4.70	2.751	$0 \cdot 119$	2.757	0.125	2.764	$0 \cdot 133$	2.772	$0 \cdot 141$
475	2.775	$0 \cdot 144$	2-783	0.152	2.791	$0 \cdot 161$	$2 \cdot 801$	$0 \cdot 171$
4-80	$2-799$	$0 \cdot 170$	2-698	$0 \cdot 180$	2-818	$0 \cdot 190$	2-829	0.202
485	2-824	$0 \cdot 196$	2.834	0.207	2845	0.219	2858	0.233
$4-90$	2.848	0.222	$2 \cdot 859$	0.234	2.872	0-243	2-887	$0 \cdot 263$
4.95	2872	0248	2.885	0-261	2:899	0.277	3916	0294
5.00	2896	0-273	2.911	0-239	2.927	0.306	$2-944$	$0 \cdot 335$
5.05	2.921	0299	2.936	0-316	2.954	0.334	2973	$0 \cdot 355$
$5 \cdot 10$	2945	0-375	2962	0-343	2.981	$0 \cdot 363$	$3 \cdot 602$	0.386
5.15	2.969	0.351	2-987	$0 \cdot 370$	$3 \cdot 008$	0.392	3031	0417
5.20	$2 \cdot 993$	0.377	3.013	0-398	3.015	$0-421$	3059	0-447
5.25	3.017	0.402	3.038	0.425	3.062	0-450	3088	0478
5-30	3.042	0.428	3-064	0.452	3.089	0-479	3.117	${ }^{0} 50508$
5-35	3.056	0.454	3.089	0.479	3.116	0-507	3.146 3.174	$9-539$ $0-570$
5-40	3.080	04880	3115	$0 \cdot 506$				
5.45	$3 \cdot 114$	0. 506	3-141	0.54	$3 \cdot 170$	0.565	3203	$0 \cdot 600$
5-50	3-136	0.531	3-166	0.561	$3 \cdot 197$	0-594	1.232	0.61
5.55	$3 \cdot 163$	0.557	3192	0.588	3.224	0.623	3261	0.682
54\%	3-187	0.583	$3 \cdot 217$	0.613	3.251	$0-652$	3.289	0.692
545	3211	0.609	1243	0.643	3.273	$0 \cdot 650$	$3 \cdot 318$	$0 \cdot 723$
5.70	3.235	0.635	3265	0.670				
5.75	3-299	0.660	3294	0.697	3.332	0.738	3.376 3	0734 0815
5-80	3.284	$0 \cdot 686$	3.319	0.724	3.359	0767	3.404 3.431	0.815
5-85	3.308	0.712	$3 \cdot 345$	0.752	$3 \cdot 387$	0796	3.433	${ }_{0}^{0-876}$
$5 \cdot 90$	3-332	6.738	3.371	$0 \cdot 779$	3414	08825	3462	0.876
595	$3 \cdot 356$	0.764	3.396	$0 \cdot 806$	3.441	0.853 0.882	3"491	0707 0.937
6.00	3-3811	0.769	3.427	${ }^{0.813}$	3.468	0.882	3.548	0996
$6-05$	3.405	0815	3447	0.80	3.595 3	0.980	3.577	- $0 \cdot 999$
619 615	3.429 3 3	0.841 0.867	3.473 3.498	0915	3.549	0.969	3.606	1029
620	3-477	0.893	$3-524$	0912	3.576	$0 \cdot 908$	3.634	1060
625	$3-502$	0.918	3.549	0.969	${ }^{3} \cdot 603$	1.026	3.663 3.692	1.191
6.30	3-526	0.944	3.575	0997	3.630	$1-055$ $1-034$	3.692 3.721	$1 \cdot 152$
635	3-550	0.970	3601	1024	3.657	1-113	3.7219	${ }_{1} \cdot 182$
640	3.574	0.996	3626	1051	368	$1 \cdot 113$	3749	$1 \cdot 182$
6.45	3.598	$1 \cdot 022$	$3 \cdot 652$	1.078	3711	$1 \cdot 142$	3778	$1 \cdot 213$
6.5	3.623	1047	3.677	1106	3733	$1 \cdot 171$	3.807	1.244
6.55	$3 \cdot 647$	1.973	$3 \cdot 703$	1-133	3765	$1+199$	3.836	1274
6.60	3.671	1.099	3.728	$1 \cdot 160$	$3 \cdot 792$	1-228	3-891	${ }_{1}^{1-376}$
665	3.695	1-125	3.754	1.187	3.819	1-257	3-391	1.336

TABLE 49 FLEXURE - REINFORCEMENT PERCENTAGES FOR DOUBLY
REINFORCED SECTIONS

$\mathrm{Ma}_{3} / \mathrm{Cl}^{\text {d }}$,		005		010		0-15	$\begin{aligned} & f_{\mathrm{c}}=15 \mathrm{~N} / \mathrm{mm}^{3} \\ & f_{y}=415 \mathrm{~N} / \mathrm{mm}^{3} \end{aligned}$	$\mathrm{N} / \mathrm{mm}^{3}$ $\mathrm{N} / \mathrm{mm}^{1}$ 20
$\mathrm{N} / \mathrm{mm} \mathrm{m}^{\text { }}$	P_{1}	P_{e}	r_{1}	P_{e}	$P_{P_{1}}$	P_{5}	$P_{\text {t }}$	P_{6}
208	$0 \cdot 719$	0.003	0.720	0.003	0.720	0-003	0720	$0-003$
$2 \cdot 10$	0.725	0 0-009	0.725	0.009	0.726	$0 \cdot 010$	0.727	0.011
220	0.754	0.039	0-757	0.041	0759	0.045	0-761	0-050
230	0.784	0.069	0.757	0073	0.791	0-080	0-796	0-069
240	0.813	0.099	0-818	$0 \cdot 106$	0-824	0.115	0831	$0 \cdot 117$
$2-50$	0.842	0.129	0.849	0138	0.857	0.150	0.865	$0 \cdot 166$
$2 \cdot 60$	0.571	0-160	0880	0170	0.859	0.185	0.900	0.205
270	0900	0190	0.910	0.202	0922	0.220	$0-935$	0-244
2,80	0929	0.220	0.941	0234	0.954	0225	$0-969$	0.282
2-90	0959	0250	0972	0267	0.987	0.290	1.004	0-321
300	0983	0230	1003	0-299	1020	0323	1039	$0-360$
$3 \cdot 10$	1.017	0311	1034	0.331	1.052	0.360	1073	0.59
3.29	1.046	0341	1064	$0 \cdot 363$	14085	0.395	$1 \cdot 108$	0438
130	1075	$0 \cdot 371$	1.035	0.395	$1 \cdot 117$	0430	1.142	0476
3.40	$1 \cdot 104$	0.401	[-126	0.427	$1 \cdot 150$	0465	1.177	0-515
3.50	1.134	0.432	1-157	0.460				$0 \cdot 354$
360	$1 \cdot 163$	0462	1-158	0492	$1 \cdot 215$	0535	$1 \cdot 245$	0.593
$3 \cdot 70$	1192	0.492	1218	0524	1-248	0571	1.281	0.631
3×80	1.221	0522	1249	0-556	1289	0.606	1-316	0.670
3.90	11250	D. 552	1.250	0.588	$1+313$	0.641	1.150	0.709
400	1.279	0.591	1311	0.621	1.346	0.676	1.345	0.748
$4 \cdot 10$	1.309	0613	1342	0.653	1.378	$0 \cdot 711$	1420	0.737
$4 \cdot 20$	$1 \cdot 338$	0643	1.372	0685	1.411	0.746	1434	08123
$4 \cdot 30$	$1+367$	0673	1.403	0.717	1.443	0781	1.489	0.864
440	1-396	0.703	14334	0749	1476	0.816	1.524	$0-803$
4.50 460	1.125 1.455	0.734 0.764	1.465 1.495	0.781 0.814	1.509 1.541	0851 0855	1.558 1.593	0.942 0.980
4.70	1.484	0794	1.526	0.846	1-574	0.921	1.627	1019
4.80	1.513	0.824	1.559	0-873	1.605	0956	1.662	1.058
490	1.542	0.855	1588	0910	1.639	0991	1.697	1.097
500 510	1.971 1.600	0.885 0.915	1619 1649	0.942 0.975	${ }_{1}^{1.7042}$	1025 1061	1.731 1.766	1.136 1.174
520	1.630	0.945	1.680	1007	$1-237$	1.095	1-801	$1 \cdot 213$
$5 \cdot 30$	1.659	0975	$1 \cdot 711$	1.039	1769	$1 \cdot 131$	1-835	1252
$5 \cdot 40$	1.688	1.006	$1 \cdot 742$	1071	1.802	$1 \cdot 165$	1-870	1/291
5.50	1717	1035	1.773	1103	1.835	1201	1.905	1339
560	1.746	1068	1-803	1126	1.867	1236	1.939	1.368
5.70	1775	109	1.834	1168	1.900	1271	1.974	1407
500	1.805	1.125	1-865	1200	1.932	$1+306$	2.008	1.446
5.90	1.834	11157	1-896	$1 \cdot 232$	1-965	$1 \cdot 341$	2.043	1485
6.00	1.863	$1 \cdot 187$	$1-927$	1/264	1.998	1.376	2.078	1-523
$6 \cdot 10$	1-692	1217	1-957	1296	2090	1411	$2 \cdot 112$	1-562
$6 \cdot 20$	1.921	1.247	1-988	1.329	2063	1.446	$2 \cdot 147$	1.601
$6 \cdot 30$	1.950	1278	2.019	1.361	2095	1.481	$2 \cdot 182$	1.640
$6 \cdot 40$	1980	1/308	2.050	1.393	2.128	15517	$2 \cdot 216$	1.678

TABLE 50 FLAXURE - REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

TABLE 51 FLEXURE-REINFORCEMENT PERCENTAGES'FOR DOUBLY REINFORCED SECTIONS

TABLE 52 FLEXURE-REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

		05					$\begin{aligned} & f_{\text {ck }}=30 \mathrm{~N} / \mathrm{mm}^{3} \\ & f_{7}=415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	
$\mathrm{N} / \mathrm{mm}{ }^{2}$	P_{1}	P_{6}	P_{t}	P_{c}	P_{1}	$P_{\text {e }}$	$P_{\text {k }}$	P_{e}
4.15	1.436	$0 \cdot 002$	1.436	0002	1.436	0002	1.436	
420	1451	0.017	1451	0019	1.452	0020	1.454	0.022
4.30	1480	0.048	1.482	0051	1485 1.518	0.056	1.488 1.523	${ }_{0}^{0.062}$
$4-40$	1.509 1.538	-0.079	1.513	0084 0.117	1.518 1.550	0.092	1.523 1.558	${ }_{0}^{0-102}$
450	1.538	0-110	1.544	$0 \cdot 117$	1.550	$0 \cdot 127$	1.558	0-141
4.6	1.567	0-141	1.575	0.150	1-583	0-163	1-592	0.181
470	1.596	0-171	$1 \cdot 605$	0.183	1.615	0-199	1.627	0222
$4-60$	1626	0.202	1.636	$0 \cdot 215$	1648	0.235	1.661	0.260
450	1655	0233	1667	0248	1.651	0270	1.696	0.300
500	1684	0.264	$1 \cdot 698$	0-281	1.713	0.306	1731	$0 \cdot 339$
$5 \cdot 10$	1.713	0.295	1729	0-314	1746	0.42	- $\begin{aligned} & 1-765 \\ & 1-800\end{aligned}$	0.379 0.418
520 5.30	1747	0.325	$1-759$ 1.790	$0-347$ $0-380$	1.78	0.378 0.413	1.800 1.835	0.418 0.458
$5 \cdot 40$	1781	0356 0.387	1.821	0.3812	1.811	0.449	1835 1.869	0458 0.498
$5 \cdot 50$	1.830	0418	1+852	$0 \cdot 445$	1.876	$0 \cdot 485$	1.904	0-537
$5 \cdot 60$	1-859	0.449	1.883	0.478	1909	$0 \cdot 521$	1-939	0.577
570	1-888	0479	1.913	0.511	1941	0.556	1.973	0.616
$5 \cdot 80$	1917	0510	1.944	0-544	1974	0.592	2008	0.656
$5 \cdot 90$	1946	0.541	1.975	0.576	2007	0.628	2.042	0696
6.00	19976	0.572	2.006	0.609	2039	0.664	2.077	0735
$6 \cdot 10$	2005	$0 \cdot 603$	2.036	$0-642$	2072	0.699	$2 \cdot 112$	
620	2004	$0 \cdot 614$	2.067	0675	$2 \cdot 104$	0.735	2.146	0814
6.30	2063	0.664	2.098	$0-768$	${ }_{2}^{2} 137$	$0 \cdot 771$	2.181	0854
6.40 6.50	2092 2.121	0.695 0.726	$2 \cdot 129$ $2+160$	- $0-741$	2.170 2.202	0.897 0.842	2.216 $\mathbf{2} 250$	08894 0.933
6.60	$2 \cdot 151$	$0 \cdot 757$	2.190	08806	2235	0.878	$2 \cdot 285$	0973
670	2-150	0788	$2 \cdot 221$	0-839	2.267	0.914	2.320	1012
6.80	2209	$0 \cdot 818$	2.252	0872	$2 \cdot 300$	0.050	2.354	1.052
6.90	2238	$0 \cdot 849$	2.283	0905	$2 \cdot 333$	0.985	2.389	1.092
7.60	$2 \cdot 267$	0-830	2-314	0-937	2.365	1.021	24.424	$1 \cdot 131$
710	2.296	$0-911$	2-344	0.970	$2 \cdot 398$	1057	2458	1171
720	$2 \cdot 326$	0-942	2.375	1.003	$2 \cdot 431$	${ }^{1.093}$	2.493	1.210
730	$2 \cdot 355$	0972	2406	1.036	2463	1.128	2.527	1250
740	$2 \cdot 384$	1003	2.437	1.069	2.496	11164	- ${ }_{\text {2- }}$	1.290
750	$2 \cdot 413$	1.034	2468	11102	2-528	1200	2-597	1329
760	$2 \cdot 442$	1065	2.498	1.134	2-561	1236	2.631	1369
770	2.471	1.095	2.529	1167	2.594	1271	$2 \cdot 666$	1.408
780	2-530	$\frac{1}{1 \cdot 126}$	2.560 2.591	1200 1.213	2.626 2.659	1.307 1.343	2.701 2.735	1.448 1.488
$8 \cdot 0$	2.50	1188	2.621	1-266	$2 \cdot 691$	1.379	2.770	1-527
$8 \cdot 10$	2.588	1-219	2.652	1.299	$2 \cdot 724$	1414	$2 \cdot 505$	$1 \cdot 567$
$8 \cdot 20$	2.617	1250	2.683	1.331	$2 \cdot 757$	1450	2.839	1.606
$8 \cdot 30$	2.646	1280	2.714	1-364	2.789	$1-487$	2-574	1.646
840	2676	1.311	2.745	$1 \cdot 397$	$2 \cdot 822$	1.522	2908	1.686
8-50	2505	$1 / 342$	2.775	1430	$2 \cdot 854$	1.557	2943	$1+725$

TABLE 53 FLEXURE-REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

$$
\begin{aligned}
& f_{c_{k}}=15 \mathrm{~N} / \mathrm{mm}^{2} \\
& f_{y}=500 \mathrm{~N} / \mathrm{mman}^{2}
\end{aligned}
$$

	$d / d / d=0.05$		$d^{\prime} / d=0.10$		$d / d=0.15$		$d^{\prime} / d^{\prime}=0.20$	
$\mathrm{N} / \mathrm{mm}^{2}$	P_{8}	$P_{\text {c }}$	P_{t}	P_{c}	$P_{\text {t }}$	P_{6}	P_{1}	P_{e}
2.00	0.568	0-001	0.568	0.001	0.568	0.001	0-568	0002
2-10	0.592	0-026	0.593	0.029	0.595	0-632	0.596	00036
$2 \cdot 20$	$0 \cdot 616$	0-052	0.619	0.056	0.622	0.062	0.625	0.070
230	0.640	0.077	0.644	0.084	0.649	0-092	0.654	$0 \cdot 105$
2.40	0.664	0-102	0.670	$0 \cdot 111$	$0 \cdot 676$	$0 \cdot 122$	$0 \cdot 683$	$0-139$
$2 \cdot 50$	0.659	$0 \cdot 127$	$0 \cdot 685$	0.138	$0 \cdot 703$	0.153	0.711	
$2 \cdot 60$	0713	0.153	0.721	$0 \cdot 166$	0.730	0-183	0.740	0.208
$2-70$	0.737	$0 \cdot 178$	0746	$0 \cdot 193$	0.757	$0 \cdot 213$	0-769	0-242
280	0-761	$0 \cdot 203$	$0 \cdot 72$	0.221	0.784	0.244	0.798	0-276
290	$0 \cdot 785$	0.228	0.798	0248	0.811	0.274	0.826	0-310
300	0.810	0.253	$0-823$	0.276	0.838	$0 \cdot 304$	0.855	0-345
$3 \cdot 10$	0.834	0.279	0849	$0 \cdot 303$	0.865	0.334	0.884	0.379
3.20	$0 \cdot 858$	$0 \cdot 304$	0-874	0.350	$0 \cdot 892$	0.365	0.913	0.413
3.30	$0 \cdot 882$	0.329	$0 \cdot 900$	0.358	0.919	0395	0.941	0.448
340	0906	0.354	0.925	0.385	0.946	04425	0-970	0-482
$3 \cdot 50$	0-931	$0 \cdot 380$	0-951	0.413	0.974	0.455		
3.60	0.955	0.405	0.976	0.440	$1-001$	$0 \cdot 486$	1.028	0.551
3.70	0-979	0.430	1.002	0465	1028	0.516	1056	0.585
$3 \cdot 80$	1.003	0.455	1.028	0495	1.055	0.546	$1-085$	0.619
$3 \cdot 90$	1.028	$0 \cdot 481$	1.053	0.523	1052	0.577	1-114	0.654
400	1.052	0-506	1.079	0.550	1-109	0.607	1.143	
410	1.076	0.531	1.104	0.577	1.136	0.637	$1 \cdot 171$	0722
420	1-100	0556	1130	-605	1163	0667	$1-200$	0.757
430	1124	0.582	1.155	0.632	1.190	0698	1-229	0.791
440	1-149	$0-607$	1-181	0.660	1.217	0.728	1258	$0 \cdot 825$
4-50	$1 \cdot 173$	0.632	1206	0.687	$1 \cdot 244$	$0 \cdot 758$	1.286	0-860
460	1-197	$0 \cdot 657$	123	0.715	1271	$0-789$	1/315	0-894
470	1221	00682	1258	0.742	1.298	0.819	$1 \cdot 344$	0.928
4.50	1-245	$0-708$	1283	0769	1-325	0.849	1/373	0963
490	1270	0733	1309	$0 \cdot 797$	1/352	$0 \cdot 879$	1401	$0-997$
5.00 $5 \cdot 10$	1-294	0.758	1.334	$0-824$	1.379	$0-910$	14430	
$5 \cdot 10$	1.318	0.783	1.360	0.852	1.406	0.940	1.459	1.066
$5 \cdot 20$ 5.30	$1 \cdot 342$	0.809	1.385	0879	1.4.4	0970	1488	1-100
$5 \cdot 30$ 5.40	1.366	0.834	1.411	$0-907$	1.461	1.000	1-516	$1 \cdot 134$
540	1-391	0-859	1436	0-934	1485	1-031	1-545	1-169
$5 \cdot 50$	1415	$0-884$	14462	0-962	1.515	1.061	1-574	1.203
5.60	1439	0910	1.488	0-989	1.542	1.091	$1 \cdot 603$	$1 \cdot 237$
570	$1 \cdot 463$	09335	1.513	1.016	1.569	$1 \cdot 122$	1.631	1.272
5	1.488	0.960	1.539	1.044	1.506	1-152	1.650	1-306
590	1-512	0-985	1-564	1.071	1.623	$1 \cdot 182$	1.689	$1 \cdot 340$
600	1.536	1.011	1-590	1.099	1.650	1212	$1 \cdot 718$	1-375
6.10	1.560	1.036	1.615	$1 \cdot 125$	1677	1243	1.746	1.409
6.20	1-584	1.061	1.641	$1 \cdot 154$	1704	1273	1.775	1443
630 6.40	1.609 1.633	1.086	1.666	1.181	1.731	1-303	1-804	1.478
6×40	1.633	$1 \cdot 111$	1.692	1-208	1-758	1-334	1-833	1.512

TABLE 54 FLEXURE-REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECIIONS

$\begin{aligned} & \mathrm{N}_{0} / \mathrm{b} \mathrm{~b}^{\mathbf{2}}, \\ & \mathrm{N} / \mathrm{mm}^{3} \end{aligned}$	$d^{\prime} / d=0.05$		$d^{\prime} / d=0-10$		$d^{\prime} / d=0.15$		$\begin{aligned} f_{\mathrm{ck}} & =20 \mathrm{~N} / \mathrm{mm}^{2} \\ f_{y} & =500 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	
	Pr_{1}	P_{e}	P_{1}	P_{e}	$P_{\text {f }}$	P_{e}	P	P_{e}
$\begin{aligned} & 2 \cdot 67 \\ & 270 \\ & 2-80 \\ & 2 \cdot 90 \\ & 300 \end{aligned}$	$\begin{aligned} & 0758 \\ & 0765 \\ & 0789 \\ & 0.813 \\ & 08137 \end{aligned}$	$\begin{aligned} & 0-002 \\ & 0-010 \\ & 0-035 \\ & 0.061 \\ & 0-086 \end{aligned}$	$\begin{aligned} & 0758 \\ & 0765 \\ & 0.791 \\ & 0.816 \\ & 0.862 \end{aligned}$	$\begin{aligned} & 0-003 \\ & 0.011 \\ & 00038 \\ & 0.066 \\ & 0-094 \end{aligned}$	$\begin{aligned} & 0753 \\ & 0766 \\ & 0793 \\ & 0.820 \\ & 0.847 \end{aligned}$	$\begin{aligned} & 0-003 \\ & 0-012 \\ & 0-042 \\ & 0-073 \\ & 0-103 \end{aligned}$	$\begin{aligned} & 0.758 \\ & 0757 \\ & 0795 \\ & 0.824 \\ & 0-853 \end{aligned}$	$\begin{aligned} & 0.003 \\ & 0.014 \\ & 0.045 \\ & 0.083 \\ & 0.117 \end{aligned}$
$\begin{aligned} & 3 \cdot 10 \\ & 3-20 \\ & 3 \cdot 60 \\ & 3 \cdot 40 \\ & 3-50 \end{aligned}$	$\begin{aligned} & 0-862 \\ & 0886 \\ & 0-910 \\ & 0-934 \\ & 0-988 \end{aligned}$	$\begin{aligned} & 0.111 \\ & 0.137 \\ & 0.162 \\ & 0.181 \\ & 0.213 \end{aligned}$	$\begin{aligned} & 0-868 \\ & 0-893 \\ & 0-919 \\ & 0-944 \\ & 0-970 \end{aligned}$	$\begin{aligned} & 0.121 \\ & 0149 \\ & 0-176 \\ & 0.204 \\ & 0.232 \end{aligned}$	$\begin{aligned} & 0.874 \\ & 0.901 \\ & 0.928 \\ & 0955 \\ & 0.982 \end{aligned}$	0.134 $0 \cdot 164$ 0.195 0.225 0256	$\begin{aligned} & 0.982 \\ & 0.910 \\ & 0-939 \\ & 0.968 \\ & 0.997 \end{aligned}$	$\begin{aligned} & 0.152 \\ & 0.186 \\ & 0.221 \\ & 0.255 \\ & 0290 \end{aligned}$
$\begin{aligned} & 3-60 \\ & 3-0 \\ & 3-60 \\ & 3-60 \\ & 400 \end{aligned}$	$\begin{aligned} & 0.983 \\ & 1007 \\ & 1031 \\ & 1006 \\ & 1000 \end{aligned}$	$\begin{aligned} & 0-238 \\ & 0-264 \\ & 0-239 \\ & 0.314 \\ & 0-340 \end{aligned}$	$\begin{aligned} & 0-998 \\ & 1.021 \\ & 1-046 \\ & 1.072 \\ & 1.098 \end{aligned}$	$\begin{aligned} & 0-299 \\ & 0.287 \\ & 0-314 \\ & 0-342 \\ & 0-369 \end{aligned}$	$\begin{aligned} & 1.009 \\ & 1.036 \\ & 1.064 \\ & 1.691 \\ & 1.118 \end{aligned}$	$\begin{aligned} & 0-386 \\ & 0.316 \\ & 0.347 \\ & 0.377 \\ & 0-408 \end{aligned}$	$\begin{aligned} & 1-055 \\ & 1-054 \\ & 1-053 \\ & 1-112 \\ & 1-140 \end{aligned}$	$\begin{aligned} & 0.324 \\ & 0.399 \\ & 0.394 \\ & 0.423 \\ & 0463 \end{aligned}$
$\begin{aligned} & 410 \\ & 420 \\ & 430 \\ & 450 \end{aligned}$	$\begin{aligned} & 1 \cdot 104 \\ & 1 \cdot 128 \\ & 1 \cdot 152 \\ & 1.176 \\ & 1201 \end{aligned}$	0.365 $0-391$ 0.416 0.41 $0-467$	$\begin{aligned} & 1 \cdot 123 \\ & 1 \cdot 149 \\ & 1 \cdot 174 \\ & 1.200 \\ & 1.205 \end{aligned}$	$\begin{aligned} & 0: 397 \\ & 0.425 \\ & 0452 \\ & 0-480 \\ & 0-507 \end{aligned}$	$\begin{aligned} & 1.145 \\ & 1.172 \\ & 1.199 \\ & 1.226 \\ & 1.253 \end{aligned}$	$\begin{aligned} & 0-438 \\ & 0446 \\ & 0.499 \\ & 0.590 \\ & 0-560 \end{aligned}$	$\begin{aligned} & 1.169 \\ & 1.199 \\ & 1.227 \\ & 1.225 \\ & 1.254 \end{aligned}$	$\begin{aligned} & 0.497 \\ & 0.532 \\ & 0.566 \\ & 0.601 \\ & 0.635 \end{aligned}$
$\begin{aligned} & 460 \\ & 4-0 \\ & 4-00 \\ & 5-00 \end{aligned}$	$\begin{aligned} & 1275 \\ & 1249 \\ & 1273 \\ & 1.297 \\ & 1322 \end{aligned}$	$\begin{aligned} & 0-42 \\ & 0-517 \\ & 0-43 \\ & 0-567 \\ & 0-593 \end{aligned}$	$\begin{aligned} & 1251 \\ & 1216 \\ & 1.30 \\ & 1328 \\ & 1.353 \end{aligned}$	$\begin{aligned} & 0-535 \\ & 0583 \\ & 0-590 \\ & 0.618 \\ & 0.645 \end{aligned}$	$\begin{aligned} & 1.289 \\ & 1.307 \\ & 1.334 \\ & 1.361 \\ & 1.388 \end{aligned}$	$\begin{aligned} & 0.591 \\ & 0.621 \\ & 0.651 \\ & 0.682 \\ & 0.712 \end{aligned}$	$\begin{aligned} & 1 \cdot 313 \\ & 1-342 \\ & 1 \cdot 370 \\ & 1399 \\ & 1 \cdot 428 \end{aligned}$	$\begin{aligned} & 0.670 \\ & 0704 \\ & 0-739 \\ & 0-713 \\ & \mathrm{r} \end{aligned}$
$\begin{aligned} & 5-10 \\ & 5 \cdot 20 \\ & 5 \cdot 30 \\ & 5 \cdot 40 \\ & 5 \cdot 50 \end{aligned}$	$\begin{aligned} & 1346 \\ & 1.370 \\ & 1.394 \\ & 1418 \\ & 1443 \end{aligned}$	$0-619$ $0-64$ $0-670$ 0 -698 0720	$\begin{aligned} & 1.379 \\ & 1494 \\ & 1430 \\ & 1435 \\ & 1.435 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0701 \\ & 0728 \\ & 0756 \\ & 0783 \end{aligned}$	$\begin{aligned} & 1+415 \\ & 1442 \\ & 1+469 \\ & 14.49 \\ & 1.524 \end{aligned}$	$\begin{aligned} & 0743 \\ & 0773 \\ & 0.804 \\ & 0.834 \\ & 0.865 \end{aligned}$	$\begin{aligned} & 1+457 \\ & 1+45 \\ & 1+514 \\ & 1-543 \\ & 1+572 \end{aligned}$	$\begin{aligned} & 0-843 \\ & 0-877 \\ & 0-912 \\ & 0-946 \\ & n-981 \end{aligned}$
$\begin{aligned} & 5.60 \\ & 570 \\ & 5.90 \\ & 590 \\ & 6.90 \end{aligned}$	$\begin{aligned} & 1.467 \\ & 1491 \\ & 1515 \\ & 1-540 \\ & 1-564 \end{aligned}$	$\begin{aligned} & 0-746 \\ & 0771 \\ & 0-796 \\ & 0.822 \\ & 0-877 \end{aligned}$	$\begin{aligned} & 1-506 \\ & 1-532 \\ & 1-538 \\ & 1-583 \\ & 1-609 \end{aligned}$	$\begin{aligned} & 0.811 \\ & 0-839 \\ & 0.866 \\ & 0.994 \\ & 0.921 \end{aligned}$	$\begin{aligned} & 1.551 \\ & 1-578 \\ & 1.605 \\ & 1.632 \\ & 1.659 \end{aligned}$	$\begin{aligned} & 0-895 \\ & 0-925 \\ & 098 \\ & 0986 \\ & 1-917 \end{aligned}$	$\begin{aligned} & 1.600 \\ & 1.629 \\ & 1.659 \\ & 1.657 \\ & 1.715 \end{aligned}$	$\begin{aligned} & 1015 \\ & 1050 \\ & 1004 \\ & 1 \cdot 119 \\ & 1-153 \end{aligned}$
$\begin{aligned} & 610 \\ & 620 \\ & 6-30 \\ & 6 \cdot 40 \\ & 6-30 \end{aligned}$	$\begin{aligned} & 1-588 \\ & 1612 \\ & 1636 \\ & 1661 \\ & 1685 \end{aligned}$	$\begin{aligned} & 0-873 \\ & 0-898 \\ & 0-923 \\ & 0-9.49 \\ & 0-974 \end{aligned}$	$\begin{aligned} & 1.634 \\ & 1.660 \\ & 1.65 \\ & 1.711 \\ & 1.736 \end{aligned}$	$\begin{aligned} & 0-99 \\ & 0.976 \\ & 1004 \\ & 1032 \\ & 10099 \end{aligned}$	$\begin{aligned} & 1 \cdot 686 \\ & 1.713 \\ & 1740 \\ & 1.767 \\ & 1.794 \end{aligned}$	$\begin{aligned} & 1-097 \\ & 1.108 \\ & 1-108 \\ & 1.139 \\ & 1-168 \end{aligned}$	$\begin{aligned} & 1744 \\ & 1773 \\ & 1.802 \\ & 1.830 \\ & 1.859 \end{aligned}$	$1-1488$ $1-223$ $1-257$ 1292 $1-326$
$\begin{aligned} & 660 \\ & 600 \\ & 680 \\ & 600 \\ & 700 \end{aligned}$	$\begin{aligned} & 1709 \\ & 1733 \\ & 1757 \\ & 1782 \end{aligned}$	$\begin{aligned} & 0.999 \\ & 1.025 \\ & 1-0.9 \\ & 1-106 \\ & 1.101 \end{aligned}$	$\begin{aligned} & 1762 \\ & 1788 \\ & 1 \cdot 813 \\ & 1 \cdot 739 \\ & 1 \cdot 664 \end{aligned}$	$\begin{aligned} & 1.057 \\ & 1 \cdot 114 \\ & 1 \cdot 162 \\ & 1 \cdot 170 \\ & 1 \cdot 197 \end{aligned}$	$\begin{aligned} & 1.821 \\ & 1.848 \\ & 1.875 \\ & 1.902 \\ & 1.929 \end{aligned}$	$\begin{aligned} & 1-200 \\ & 1.230 \\ & 1.260 \\ & 1.291 \\ & 1-321 \end{aligned}$	$\begin{aligned} & 1-888 \\ & 1-977 \\ & 1985 \\ & 1-974 \\ & 2-003 \end{aligned}$	$\begin{aligned} & 1.361 \\ & 1.395 \\ & 1430 \\ & 1464 \\ & 1499 \end{aligned}$

TABLE 55 FLEXURE-REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

 $\mathrm{N} / \mathrm{mm}^{2}$	$d^{\prime} / d=005$		$d^{\prime} / d=0-10$		$d^{\prime} / d=0 \cdot 15$		$\begin{aligned} & f_{f_{k}}=25 \mathrm{~N} / \mathrm{mm}^{2} \\ & f_{r}=500 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	
	P_{1}	P_{6}	$P_{\text {f }}$	P_{s}	P_{1}	$P_{\text {g }}$	P_{1}	$P_{\text {e }}$
$\begin{aligned} & 3.33 \\ & 3 \cdot 40 \\ & 3.50 \\ & 3.60 \end{aligned}$	0.945 $0-962$ $0-986$ 1010	0001 0.019 $0-044$ $0-070$	$\begin{aligned} & 0945 \\ & 0963 \\ & 0999 \end{aligned}$ 1-014	$\begin{aligned} & 0.001 \\ & 0.021 \\ & 0.008 \end{aligned}$	$\begin{aligned} & 0-945 \\ & 0-964 \\ & 0-991 \end{aligned}$	0-001 0.023 $0-053$ 008	0.945 0.965 0.994	$\begin{aligned} & 0.001 \\ & 0-005 \\ & 0-060 \\ & 0.005 \end{aligned}$
370	1.035	$0 \cdot 085$	1.040	$0 \cdot 104$	1.045	$0 \cdot 115$	1.052	${ }_{0}^{0085}$
$3 \cdot 00$	1-059	$0 \cdot 121$	1.065	0.132	1072	0.145	1090	0.165
$3-90$	1083	0.146	1.691	0.159	1.099	0.176	$1 \cdot 109$	$0 \cdot 200$
4.00	$1 \cdot 107$	0.172	1-116	0.157	$1 \cdot 126$	0206	1'138	0-24
410	$1 \cdot 131$	$0 \cdot 197$	$1 \cdot 142$	0215	$1 \cdot 154$	0.237	$1 \cdot 167$	0-209
420	1-156	0223	$1 \cdot 167$	0.242	1181	0268	1+195	0-304
4380	1.180 1204	0248 0.274	1.193 $1 \cdot 219$	0270	1208	0.798	1224	0.339
4.40	1204 1.228 1	0274	1.219 1.244	0.233	$\begin{aligned} & 1235 \\ & 1.262 \end{aligned}$	0.329 0.360	1233 1.282	$0-373$ 0.408
$4 \cdot 6$	1253	0.325	$1 \cdot 270$	0.353	1229	0.390	$1 \cdot 310$	$0 \cdot 443$
470	1-277	0.350	$1 \cdot 295$	0.381	1.316	0.421	1339	$0 \cdot 475$
480	1.301	0376	$1 \cdot 321$	0-409	1.343			0-512
490	1.325	0406	1.346	O-437	$1 \cdot 370$	0482	1357	0.547
$5 \cdot 0$	1.359	0427	1.372	$0-464$	1-397	0.513	1425	$0 \cdot 582$
$5 \cdot 10$	$1 \cdot 374$	$0-453$	1-397	$0-492$	1424	0.543	1454	$0 \cdot 617$
520	1-398	0.478	1.423	0-530	1451	0-574	1483	0.651
$5 \cdot 90$	1-422	0-504	1-449	0.545	1.478	0.605	1.512	- 686
540 $5-80$	14.46	0529 0.555	1.474	0.575	1.505	0.635	1.540	$0 \cdot 72$
5.90	1-495	0580	1-325	0.631	1-159	-0. 67	1599	0756 0790
$5 \cdot 70$	1-519	0-606	1-551	0-659	1-586	0.727	1.627	$0 \cdot 85$
						0758	1.655	$0-860$
$5-90$	1-567	0.657	1602	0714	1.641	0788	1684	$0 \cdot 95$
$6 \cdot 0$	1.592	0.682	1627	$0 \cdot 742$	1.668	$0 \cdot 819$	1713	0-929
$6 \cdot 10$ 620	1.616	0708	1.653	0.770	1695	0880	1742	0-964
6.20	1640	0.733	1679	$0 \cdot 797$	1722	0-880	1.770	0-999
6.40	1.664	0.759	1704	0.825	1749	0911	1799	1.034
640	1.688	0784	1.730	0.85	1776	0942	1-828	1.068
6.50	1713	0.810	1755	$0-881$	1-803	0972	1-857	1-103
$6 \cdot 60$	1.737	$0: 835$	1.781	$0-908$	1-1.30	1003	1-535	1-138
670	$1 \cdot 761$	$0 \cdot 861$	1.306	0936	1-857	1033	1914	1-173
	1785 1.809	0885	1.832 1.857	0.964	1.694	1054	1-943	1.207
690	1.809 1.874	0.912 0.937	1.857 1.883	0.992	1.911	1.095	1.772	1292
740	1.858	0.93	1-609	1-019	${ }_{1}^{1-938}$	$1 \cdot 125$	2.000	1277
$7 \cdot 20$	1-882	0988	$1-934$	1-075	$1-992$	-1-187	- 2.0058	1312
730	1.906	1014	1-960	$1 \cdot 103$	2019			
740	1.930	1039	1.985	$1-130$	2.096	1.245	2115	1.416
7.50	1955	1065	2.011	1158	2074	127	2-144	1.451
760	1.979	1.090	2.036	$1 \cdot 186$	2-101	$1 \cdot 309$	$2 \cdot 173$	1486
770	2003	$1 \cdot 116$	2062	$1 \cdot 213$	2.128	$1 \cdot 340$	2.202	1.320

TABLE 56 FLEXURE-REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

M/bat		005					$\begin{aligned} & f_{\mathrm{ek}}=30 \mathrm{~N} / \mathrm{mm}^{2} \\ & f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	
$\mathrm{N} / \mathrm{mm}^{1}$	P_{1}	P_{6}	$P_{\text {P }}$	P_{s}	$P_{\text {I }}$	$P_{\text {e }}$	P_{t}	P_{e}
400	1.135	0.002	1-135	0002	$1 \cdot 135$	00003	1-135	0003
410	1.159	90028	$1 \cdot 161$	0030	1.162	$0-034$	$1 \cdot 164$	0-038
420	1.183	0-054	$1 \cdot 186$	0058	1.189	0064	$1+193$	0.073
430	1208	$0 \cdot 079$	$1 \cdot 212$	0086	$1 \cdot 216$	0.095	$1 \cdot 222$	0.108
$4 \cdot 40$	1232	0-105	1237	0.114	1.244	$0 \cdot 126$	1.250	0143
450	1256	0.130	1263	$0 \cdot 142$	1271	$0 \cdot 157$	1.279	0178
$4 \cdot 60$	1280	0-156	1289	0.170	1.298	$0 \cdot 188$	1-308	0.213
470	1.305	$0-182$	1.314	0198	1.325	$0 \cdot 218$	1.337	0.248
480	1329	$0 \cdot 207$	1.340		$1 \cdot 352$	0249	1.365	
490	1.353	0-233	1.365	0.254	1.379	0.280	1.394	${ }^{0.318}$
$5-00$ $5-10$	1.377 1.401	0.259 0.284	$1 \cdot 391$ 1.416	0.281 0.309	1.406 1.433	0.311 0.342	${ }_{1}^{1.423}$	0.353 0.388
5.20	1.426	0-310	1.42	0.337	$1+460$	0.372	1-450	0.423
$5 \cdot 30$	1450	0.336	1467	0.365	14887	0-403	1-509	0.458
540	1474	0.361	1.493	0-393	1.514		1.538	
5.50	1.498	0387	1.519	0421	1.541	0465	1-567	0.528
560	1.522	0.413	1.544	0449	1-568	0495	1.595	0.563
5.70	1.547	$0-418$	1.570	$0 \cdot 477$	1.595	$0-525$	1.624	0-598
5.80	1571	$0 \cdot 464$	1.595	0.505	$1 \cdot 622$	0.557	1.653	06633
590	1.595	0.490	1.621	0.533	1.649	0.585	1.682	0.668
600	1819	ersts	1.646	$0 \cdot 360$	1.676	0619	17710	0.703
610	1643	0.541	1.672	$0 \cdot 588$	1.704	0650	$1+73$	$0 \cdot 38$
620 6.30	1668 1692	0.566 0.592	1.697 1.723	0.616 0.644	$1 / 731$ 1.758	0.650 0.711	1.768 1.797	0.783 0.807
								0.842
6.50	1740	0.643	$1 \cdot 774$	0.700	$1 \cdot 812$	0.773	1.854	0.87
6.60	1765	0.669	1-200	0.728	1.839	$0 \cdot 804$	1-383	$0-912$
670	1789	0.695	1-825	0.756	1-866	0.835	1912	0.947
$6-80$	1.813	0.720	1-851	0.784	1-203	0.865	1940	$0 \cdot 982$
6-90	1.837	0746	1.876	${ }_{0}^{0-812}$	1-920	0.896	1-969	
$7-00$	1.861	0772	1.902	0-839	1.947	0-927	1.998	1.052
710	1.686	0797	1.927	0-867	1.974	0958	2027	1.087
720	1-910	0823	1.953	$0 \cdot 895$	2.001	0.969	2.055	$1 \cdot 122$
7.30	1-934	0.849	1-979	$0-923$	2.028	1-019	2.684	1.157
740	1.988 $1-982$	0.874 0.900	2.004 2.030	0.951 0.979	2.058 2.082	1.050 10081	2.113 2.142	1.192 1.227
760	2007	$0-926$	2.055	1007	$2 \cdot 109$	$1 \cdot 112$	2170	1262
770	2-031	0.951	2.081	1.035	2.136	$1 \cdot 143$	2-199	1297
$7 \cdot 80$	2055	0997	$2 \cdot 106$	1.063	2-164	11173	2.225	1-332
7-90	2019	1002	$2 \cdot 132$	1.091				
8.00	2-103	1.028	$\frac{2 \cdot 157}{2+183}$	1.118	2.218	1.235	2.285	1.402 1.437
88	2.128	1.054	$2 \cdot 183$	$1 \cdot 146$ 1.174	2.245	1-266	$2 / 314$ $2 / 34$	14337 1472
820 8.30	2-152	1.079 1.105	2.209 2024	$1-174$ 1.202	2.272 2.299	1.297	2.343 2.372	1.472
$8 \cdot 30$	2-176	$1 \cdot 105$	2.23	1.202	$2 \cdot 299$	$1 \cdot 327$	2.372	1507

TABLE 57 FLEXURE-LIMITING MOMENT OF RESISTANCE FACTOR, M $\mathrm{m}_{\mathrm{m}} \mathrm{l} \mathrm{Im}_{\mathrm{m}} / b_{\mathrm{w}} \mathrm{d}^{d} / \mathrm{ck}$ FOR SINGLY REINFORCED T-BEAMS, $\mathrm{N} / \mathrm{mm}^{2}$

$$
f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}
$$

$D_{\text {rid }}$	b_{4} / b_{0}									
	10	20	30	40	50	$6 \cdot 1$	70	8	$9 \cdot 0$	100
0.06	$0-149$	0.175	0-201	0227	0.253	0-279	0-305	$0-331$	9357	
007	$0 \cdot 149$	0179	0-209	0239	0270	0300	0.330	0.360	0.390	0429
$0 \cdot 0$	0-149	0183	0218	$0-232$	0286	0320	0.355	0.369	0.423	$0 \cdot 457$
Ow9	0149	0187	0-226	0.264	0302	0341	0.379	0-417	$0 \cdot 456$	0.404
0-10	$0 \cdot 149$	0191	0-234	$0-276$	0-318	$0 \cdot 361$	$0 \cdot 403$	$0 \cdot 446$	$0 \cdot 488$	
0.11	$0 \cdot 149$	0195	$0-242$	0288	0334	0381	0.427	0.474	$0-520$	$0 \cdot 566$
$0-12$	$0 \cdot 149$	$0 \cdot 199$	0250	0300	03350	0.401	0451	0.501	0-551	0-602
013	0-149	0203	0-257	03312	0.366	0.420	0474	0.528	0.583	0.637
$0 \cdot 14$	0149	0-207	0-255	0.323	$0 \cdot 381$	0439	$0 \cdot 497$	0-535	0.614	0672
$0-15$	0-149	0-211	0-273	0.335	0.397	04458	0.520	0.582	0.644	0706
$0-16$	0149	0215	0260	$0 \cdot 346$	0.412	$0-477$	0.543	0.509	0.674	0740
$0 \cdot 17$	6.149	$0 \cdot 218$	0.283	$0 \cdot 357$	0427	0.496	0.565	0635	$0 \cdot 704$	773
0.18	$0 \cdot 149$	0272	0.295	$0 \cdot 368$	0441	0514	0.587	D090	$0-733$	$0 \cdot 806$
0-19	0-149	0226	0.302	0.379	0456	0.532	0.609	$0 \cdot 685$	0.763	$0 \cdot 839$
020	0-149	0229	$0 \cdot 310$	0-390	04770	0.580	$0 \cdot 631$	0711	0.791	$0 \cdot 872$
	0.149	0233	0317	$0 \cdot 400$	0.484	0.568	0652	0.736	0-820	0903
0.22	0 -149	0236	0.324	0.411	0493	0-596	0.673	0-760	0.848	0.935
0.23	$0-149$	0240	0.315	$0 \cdot 421$	$0-511$	0.602	0.69	0.783	0.873	0.964
024	$0-149$	0.242	0.334	$0-427$	0520	0.613	0705	0798	$0 \cdot 891$	$0-984$
025	0-149	0-244	0-339	0-434	0.529	0.624	0719	0814	$0-909$	1.003
026	0149	0.246	0.343	0.440	0538	0.635	0732	0-2829	0-926	1.023
027	0-149	0248	0.348	0.447	0.546	0.645	0745	0-844	$0 \cdot 93$	1.043
025	0.149	$0-250$	0-352	0453	0555	0656	0758	0-859	$0-961$	1-062
029	$0 \cdot 149$	0-253	0.356	$0-460$	0563	0.667	0770	0874	${ }^{0.978}$	1.081
0.30	0.149	0.253	0.360	0466	0.572	$0 \cdot 677$	0.783	0.859	0.995	1.100
0.31	$0 \cdot 149$	0.257	$0 \cdot 369$	0.472	0.560	$0 \cdot 688$	0.796	$0 \cdot 903$	10.11	$1 \cdot 119$
0.32	$0 \cdot 149$	0.259	$0 \cdot 369$	0479	0.588	$0 \cdot 698$	0808	0-918	1028	1.138
0.33	$0 \cdot 149$	0.261	0373	$0 \cdot 45$	$0-597$	0709	0.820	0.932	1.044	$1 \cdot 156$
0.34	0149	0263	0377	$0 \cdot 491$	$0-605$	0719	0.833	0-947	1.051	$1 \cdot 175$
0.35	0-149	0-205	0381	$0 \cdot 497$	0613	0.729	0-845	0.961	1077	1493
						$0-739$	0-857	0975	1093	1.211
037	0.149	0-269	0.59	$0 \cdot 99$	$0 \cdot 629$	0.749	0.869	0-989	1109	1.229
038	0149	0271	$0 \cdot 393$	0.515	0.697	0779	0^{880}	1002	1124	1246
$0 \cdot 39$	0-149	0.273	$0 \cdot 397$	0.521	0.644	0768	0 0-892	1.016	11140	1264
0.40	$0-149$	0.275	0-401	0.526	$0 \cdot 652$	0778	0-904	1.029	1+155	1281
$0 \cdot 41$	0.149	0277	0.404	0.532	$0-660$	0.787	0-915	1.043	1170	1.298
0.42	0.149	$0 \cdot 279$	0408	0.538	0667	0797	0-926	1.066	1186	1.313
044	0-149	0200	0412	0-54]	0.675	$0 \cdot 806$	0-938	1069	$1 \cdot 200$	1.32
0.44	0.149	0.262	0.416	0.549	$0 \cdot 682$	$0-815$	0-949	1002	1.215	1-349
045	$0-149$	0284	0.419	0-554	0.689	0-825	0-960	1.095	$1 \cdot 230$	1.365

TABLE 58 FLEXURE - LIMIIING MOMENT OF RESISTANCE FACTOR, $M_{\mathrm{n}, \mathrm{llm}} / b_{\mathrm{m}} \mathrm{m}^{10} f_{\mathrm{ct}}$, FOR SINGLY REINFORCED T-BEAMS, N / mm^{3}
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$

	$1 \cdot 0$	20	30	40	50	$6 \cdot 0$	$7 \cdot 0$	80	90	10.0
0.06	0.138	$0 \cdot 164$	0.190	0.216	0242	0.268	$0 \cdot 294$	$0 \cdot 320$	0.346	$0 \cdot 372$
0.07	0-138	$0 \cdot 168$	0-193	0.228	0.259	0.269	0.319	0.349	0.379	0.409
$0-68$	0-138	0.172	-0.207	0241	0.275	0-309	0344	0.378	0412	0.-446
$0 \cdot 00$	$0 \cdot 138$	0.176	0215	0259	0.291	0-330	0.168	0.405	0.445	0-483
0:10	0.138	0.180	0.223	0265	0-308	0-350	0.392	0-435	0.477	0.519
$0 \cdot 11$	0.138					0370	0416	0.463	0509	0-555
$0-12$	0138	0188	0.239	$0-259$	0339	0.350	0440	0490	0541	$0 \cdot 591$
$0 \cdot 13$	0138	0.192	0-247	0.301	0.355	$0-409$	0463	0.518	0.572	0-626
$0 \cdot 14$	0-138	0-196	0254	0312	0370	0-428	0.487	0.545	0.603	$0 \cdot 661$
$0 \cdot 15$	0.138	0.200	0.262	0-324	0.386	$0 \cdot 448$	0-509	0.571	0.633	0695
$0 \cdot 16$	0.138	0204	0.269	0-335	0.401	0-466	0.532	0.598	0663	0.729
$0 \cdot 17$	$0 \cdot 138$	0207	0277	0346	0416	$0 \cdot 485$	0354	0.624	$0 \cdot 693$	0.762
018	$0-138$	0211	0284	0357	04330	0-503	0576	$0 \cdot 49$	$0 \cdot 723$	0796
$0 \cdot 19$	0138	02215	0281	08308	0.445	0.522	0.598	0675	0752	$0 \cdot 828$
0-20	0138	0218	0-299	0.379	0459	0-540	$0 \cdot 620$	0.700	0780	0-861
0.21	0.138	0221	0-305	0.388	$0-471$	0.554	0.638	0.721	0.804	$0 \cdot 887$
$0 \cdot 22$	0-138	0.224	0-309	0.395	$0 \cdot 480$	$0-566$	0.651	0.737	$0-822$	0-908
0.23	0-138	0.226	0.314	04402	$0 \cdot 489$	0.577	0.665	0.753	0.841	0-928
024	0-138	0.278	0-318	$0 \cdot 408$	$0 \cdot 498$	$0-588$	06878	$0 \cdot 768$	(0)R59	$0 \cdot 949$
025	0-138	0230	$0 \cdot 323$	0415	$0 \cdot 507$	O-600	$0-692$	0784	0.876	0996
0.26	0.138	0.233	0.327	0.422	$0-516$	0.611	0705	0.800	08894	0989
0.27	0-138	0.235	0.331	0.428	0-525	0.622	0.718	0.815	0-912	1.008
0.28	0.138	0.237	$0 \cdot 316$	0.435	0.534	0.632	0.731	-0.830	0.929	1.008
029	$0 \cdot 138$	0239	0-340	0441	0.542	$0 \cdot 643$	0.74	0.845	0.946	1-047
$0 \cdot 30$	0.138	0241	0-344	0468	0.551	$0-654$	0757	0.860	0-963	1.066
$0 \cdot 31$	0-138	0.243	0-349	0.454	0-559	0.664	0770	$0-875$	0-980	1 -0s5
$0 \cdot 32$	$0 \cdot 138$	0245	0-353	0460	0-568	0.675	0.782	0.890	0.997	1-104
0.33	0-138	0248	0.357	0466	0.576	0.685	0.795	$0 \% 04$	1014	1-123
0.34	0.138	0250	0-361	0.473	0-584	$0-696$	0-807	$0-919$	1030	1.142
035	0-138	$0-252$	0-365	$0-479$	0.592	0.706	0-819	0933	1.046	1-160
$0 \cdot 37$	0138	02.25	$0 \cdot 373$	$0-491$	$0 \cdot 608$	0726	0.843	0.961	1.079	$1 \cdot 196$
$0 \cdot 38$	$0 \cdot 138$	$0 \cdot 258$	0.377	0497	0.616	0736	$0 \cdot 855$	$0-975$	1.094	1.214
$0-39$	0.138	0.260	0-381	0.503	$0-624$	0.746	$0 \cdot 867$	0-989	$1 \cdot 110$	1.232
049	0138	0252	0.385	$0 \cdot 508$	$0 \cdot 632$	0755	$0 \cdot 879$	1002	1.126	$1 \cdot 249$
041	0-138	0.263	0-389	$0-514$	$0-640$	0765	0.890	1.016	$1 \cdot 141$	1/267
0.42	$0 \cdot 138$	$0-265$	$0 \cdot 393$	0.520	0.647	0775	$0-90$	1029	1156	1.284
0.43	0.138	0267	0.396	$0-526$	$0-655$	0.784	0-913	1.042	$1 \cdot 172$	1.301
044	$0 \cdot 138$	$0 \cdot 269$	0400	0.531	0667	0793	0-924	1055	1187	$1 \cdot 318$
0.45	0-138	$0 \cdot 271$	$0-404$	0.537	0×70	0503	0.936	1068	$1 \cdot 201$	1/334

 FOR SINOLY REINFORCED T-BEAMS, $\mathrm{N} / \mathrm{mm}^{2}$

$$
\mathrm{f}=500 \mathrm{~N} / \mathrm{mm}^{4}
$$

Deld	briber									
	1.6	20	3.0	$4 \cdot 0$	50	60	70	$8-0$	S00	10-0
0.06 0.07	0.133 0.133	0.159 0.163	0.185 $0-193$	0.211 0.223	0.237 0.254			0.315 0.344	0.341 0.374	0.367 0.404
007	- 0.133	0.163 0.167	- $0-193$	0.237	0.254 0.270	0.234 0.304	0.314 0.339	${ }^{0.344}$	0374 0.407	
008	0.133 0.133	0.171	-0.202	0.246	0.270 0.286	0.304 0.325	0.339 0.363	-0.373	0.407 0.440	0441
$0 \cdot 10$	$0 \cdot 133$	0.175	0-218	0-260	$0 \cdot 303$	$0 \cdot 345$	0.387	$0-430$	0-472	0.514
$0 \cdot 11$	0.133	0.179	0.226	0272	0.318	0.365	0411	0-458	0.504	0.550
$0 \cdot 12$	0133	0.183	$0 \cdot 234$	0.234	0.334	0.385	04435	$0-485$	0-536	0-585
$0 \cdot 13$	0.133	0-187	0.241	0296	$0 \cdot 350$	0-404	0.458	0.513	0-567	0.621
014	0.133	0191	0.249	0.307	0.365	0.423	0481	$0-540$	0-599	0656
$0-15$	0.133	0-195	0-257	0-319	0.381	0-442	0-504	0-566	0-628	0690
$0-16$	$0 \cdot 133$	0-199	0.264	$0-330$	$0 \cdot 395$	$0-461$	0.527	0.593	0.658	0.724
$0 \cdot 17$	0.133	0202	$0 \cdot 272$	0341	$0 \cdot 411$	$0-480$	0.549	0.619	0.685	0.757
018	$0 \cdot 133$	0206	0-279	$0 \cdot 352$	0.425	0.498	0571	0.644	0.717	0.791
019	0.133	0.210	0286	0.363	0.440	0-516	0.593	0×670	0.747	$0 \cdot 823$
0-20	0-133	0.213	0.292	0-372	0.452	0-532	0.611	0.691	0-771	0.850
0.21	0.133	0215	$0-297$	0.379	0-461	0.543	0625	0707	0.789	0871
$0 \cdot 22$	0.133	0217	0-302	0.386	$0-470$	0.555	0.639	0.723	0.808	0-892
$0 \cdot 23$	$0 \cdot 133$	0.220	0-306	$0 \cdot 393$	0479	-0. 566	0.653	0739	$0 \cdot 826$	0912
$0 \cdot 24$	$0 \cdot 133$	$0 \cdot 222$	0-311	O4000	(0)488	$0 \cdot 577$	$0 \cdot 666$	0.755	08844	0.033
$0 \cdot 25$	$0 \cdot 133$	0.224	0-315	0.406	$0 \cdot 497$	0.589	0-680	$0 \cdot 71$	0868	0955
026	$0 \cdot 133$	0.226	0.320	0413	- 506	0.600	0-693	0-786	0-880	0-973
027	$0 \cdot 133$	0.279	0.324	0.420	0.515	0.611	0.706	0-802	0.897	0.993
0.28	0. 133	0.231	0-328	0,426	0.524	0.63	0.719	0-817	0915	1.012
029	$0 \cdot 133$	0.233	0.333	0433	0.532	0.632	0.732	0-832	0932	1.032
$0 \cdot 30$	$0 \cdot 133$	0-235	0.337	04339	$0 \cdot 541$	0.643	$0 \cdot 745$	0-847	0949	1.051
0.31	0.133	0-237	0.341	0.445	0.550	0.654	$0-758$	0.862	0-966	1070
032	0.133	0-239	0.346	0452	0.558	0.664	0.770	0.877	$0-983$	1089
033	0.133	0-241	0.350	0458	0.566	0.675	0.781	0.891	1.000	1108
034	0.133	02243	0.354	0464	0.575	0685	0795	0906	1016	1-127
0.35	$0 \cdot 133$	02245	0.358	0470	0.583	0.695	0-508	0-920	1033	$1 \cdot 145$
036	0.133	0.248	0.362	0476	0-591	0705	08820	0934	1049	1.163
037	-133	0250	0.366	0483	0-599	0716	0.832	0949	1065	1181
038	0.133	0252	0370	0488	0607	0725	0.844	0982	1081	1.199
$0 \cdot 39$	$0 \cdot 133$	0.254	0.374	0.494	0.615	0735	0.856	0976	1.097	1.217
040	0.133	0.255	0.378	0.500	$0 \cdot 623$	0745	08868	0990	$1 \cdot 112$	1.235
041	0.133	0.257	0-382	0.506	0.630	0.755	0-879	1.604	1-123	1.252
042	0.133	$0-259$	0.386	0.512	0.638	0764	$0 \cdot 891$	1017	1.143	1270
043	$0 \cdot 133$	$0 \cdot 261$	$0 \cdot 389$	$0 \cdot 518$	$0 \cdot 646$	0.774	$0 \cdot 902$	1030	1-158	1287
044	$0-133$	0-263	$0 \cdot 393$	$0-523$	0.653	0.783	0.913	1.043	1-174	1.304
$0 \cdot 45$	0-133	0.265	0.397	0-529	0.661	0.793	0.925	1.056	1-188	1.320

As in the Original Standard, this Page is Intentionally Left Blank

COMPRESSION MEMBERS

As in the Original Standard, this Page is Intentionally Left Blank

3. COMPRESSION MEMBERS

3.1 AXIALLY LOADED COMPRESSION MEMBERS

All compression members are to be designed for a minimum eccentricity of load in two principal directions. Clause 24.4 of the Code specifies the following minimum eccentricity, $e_{\text {min }}$ for the design of columns:
$e_{\text {min }}=\frac{l}{500}+\frac{D}{30}$, subject to a minimum of 2 cm .
where
l is the unsupported length of the column (see 24.1.3 of the Code for definition of unsupported length), and
D is the lateral dimension of the column in the direction under consideration.

After determining the eccentricity, the section should be designed for combined axial load and bending (see 3.2). However, as a simplification, when the value of the minimum eccentricity calculated as above is less than or equal to $0.05 D, 38.3$ of the Code permits the design of short axially loaded compression members by the following equation:

$$
P_{\mathrm{u}}=0.4 f_{\mathrm{ck}} A_{\mathrm{c}}+0.67 f_{\mathrm{y}} A_{\mathrm{sc}}
$$

where
P_{u} is the axial load (ultimate),
A_{c} is the area of concrete, and
A_{sc} is the area of reinforcement.
The above equation can be written as

$$
P_{\mathrm{u}}=0.4 f_{\mathrm{ck}}\left(A_{\mathrm{z}}-\frac{p A_{\mathrm{z}}}{100}\right)+0.67 f_{\mathrm{y}} \frac{p A_{\mathrm{z}}}{100}
$$

where
A_{g} is the gross area of cross section, and p is the percentage of reinforcement.
Dividing both sides by A_{s},

$$
\begin{aligned}
\frac{P_{\mathrm{u}}}{A_{\mathrm{z}}} & =0.4 f_{\mathrm{ck}}\left(1-\frac{p}{100}\right)+0.67 f_{y} \frac{p}{100} \\
& =0.4 f_{\mathrm{ck}}+\frac{p}{100}\left(0.67 f_{\mathrm{y}}-0.4 f_{\mathrm{ck}}\right)
\end{aligned}
$$

Charts 24 to 26 can be used for designing short columns in accordance with the above equations. In the lower section of these charts, P_{u} / A_{ε} has been plotted against reinforcement percentage p for different grades of concrete. If the cross section of the column is known, P_{v} / A_{z} can be calculated and the reinforcement percentage read from the chart. In the upper section of the charts, P_{u} / A_{g} is plotted against P_{u} for various values of $A_{\mathbf{g}}$. The combined use of the upper and
lower sections would eliminate the need for any calculation. This is particularly useful as an aid for deciding the sizes of columns at the preliminary design stage of multistoreyed buildings.

Example 5 Axially Loaded Column

Determine the cross section and the reinforcement required for an axially loaded columr with the following data:

Factored load	3000 kN
Concrete grade Characteristic strength of reinforcement	$\mathbf{M} 20$
Unsupported length of column	3.0 mm

The cross-sectional dimensions required will depend on the percentage of reinforcement. Assuming 1.0 percent reinforcement and referring to Chart 25 ,

Required cross-sectional area of column, $A_{\mathrm{g}}=2700 \mathrm{~cm}^{2}$
Provide a section of $60 \times 45 \mathrm{~cm}$.

$$
\text { Area of reinforcement, } \begin{aligned}
A_{\mathrm{s}} & =1.0 \times \frac{60 \times 45}{100} \\
& =27 \mathrm{~cm}^{2}
\end{aligned}
$$

We have to check whether the minimum eccentricity to be considered is within 0.05 times the lateral dimensions of the column. In the direction of longer dimension,

$$
\begin{aligned}
& e_{\min }=\frac{l}{500}+\frac{D}{30} \\
&=\frac{3.0 \times 10^{2}}{500}+\frac{60}{30}=0.6+2.0=2.6 \mathrm{~cm} \\
& \text { or, } e_{\min } / D=2.6 / 60=0.043
\end{aligned}
$$

In the direction of the shorter dimension,

$$
\begin{aligned}
e_{\max } & =\frac{3.0 \times 10^{2}}{500}+\frac{45}{30}=0.6+1.5 \\
& =2.1 \mathrm{~cm} \\
\text { or, } e_{\min } / b & =2.1 / 45=0.047
\end{aligned}
$$

The minimum eccentricity ratio is less than 0.05 in both directions. Hence the design of the section by the simplified method of 38.3 of the Code is valid.

3.2 COMBINED AXIAL LOAD AND UNIAXIAL BENDING

As already mentioned in 3.1, all compression members should be designed for
minimum eccentricity of load. It should always be ensured that the section is designed for a moment which is not less than that due to the prescribed minimum eccentricity.
3.2.1 Assumptiork-Assumptions (a), (c), (d) and (c) for flexural members (see 2.1) are also applicable to members subjected to combined axial load and bending. The assumption (b) that the maximum strain in concrete at the outermost compression fibre is 0.0035 is also applicablo when the neutral axis lies within the section and in the limiting case when the neutral axis lies along one edge of the section; in tho latter case the strain varies from 0.0035 at the highly
compressed edge to zero at the opposite edge. For purely axiat compression, the strain is assumed to be uniformly equal to 0.002 across the section [see 38.1 (a) of the Code]. The strain distribution lines for these two cases intersect each other at a depth of $\frac{3 D}{7}$ from the highly compressed edge. This point is assumed to act as a fulcrum for the strain distribution line when the neutral axis lies outside the section (see Fig. 7). This leads to the assumption that the strain at the highly compressed edge is 0.0035 minus 0.75 times the strain at the least compressed odge [see 38.1(b) of the Code].

STRAIN DIAGRAMS

Fig. 7 Combined axial Load and Uniaxial Bending
3.2.2 Stress Block Parameters When the Neutral Axis Lies Oitside the Section - When the neutral axis lies outside the section, the shape of the stress block will be as indicated in Fig. 8. The stress is uniformly $0.446 f_{\text {ck }}$ for a distance of $\frac{3 D}{7}$ from the highly compressed edge because the strain is more than 0.002 and thereafter the stress diagram is parabolic.

Fig. 8 Strbss Block when the Nbutral Axis Libs Outiside thb Sbction

Let $x_{\mathrm{a}}=k D$ and let g be the difference between the stress at the highly compressed edge and the stress at the least compressed edge. Considering the geometric propertios of a parabola,

$$
\begin{aligned}
g & =0.446 f_{\text {ck }}\left[\frac{\frac{4}{7} D}{k D-\frac{3}{7} D}\right]^{2} \\
& =0.446 f_{\text {ck }}\left(\frac{4}{7 k-3}\right)^{2}
\end{aligned}
$$

Area of stress block

$$
\begin{aligned}
& =0.446 f_{\mathrm{ck}} D-\frac{g}{3}\left(\frac{4}{7} D\right) \\
& =0.446 f_{\mathrm{ck}} D-\frac{4}{21} g D \\
& =0.446 f_{\mathrm{ck}} D\left[1-\frac{4}{21}\left(\frac{4}{7 k-3}\right)^{2}\right]
\end{aligned}
$$

The centroid of the stress block will be found by taking moments about the highly compressed edge.

Moment about the highly compressed edge

$$
\begin{aligned}
& =0.446 f_{c k} D\left(\frac{D}{2}\right)-\frac{4}{21} g D \\
& \quad\left[\frac{3}{7} D+\frac{3}{4}\left(\frac{4}{7} D\right)\right] \\
& =0.446 f_{\mathrm{ck}} \frac{D^{2}}{2}-\frac{8}{49} g D^{2}
\end{aligned}
$$

The position of the centroid is obtained by dividing the moment by the area. For difforent values of k, the area of stress block and the position of its centroid are given in Table H.

TABLE H STRESS BLOCK PARAMETERS WHEN THE NEUTRAL AXIS LIES OUTSIDE THE SECTION
(Clause 3.2.2)
$k=\frac{x_{u}}{D}$
(1)

1.00	0.361 fck D	0.416 D
1.05	0.374 fck D	0.432 D
$1 \cdot 10$	0.384 fck D	0.443 D
$1 \cdot 20$	0.399 fck D	0.458 D
1.30	$0.409 \mathrm{fk} D$	0.468 D
$1 \cdot 40$	0.417 fck D	0.475 D
1.50	$0.422 \mathrm{fck} D$	0.480 D
2.00	0.435 fok D	0.491 D
2.50	0.440 fck D	0.495 D
3.00	0.442 fck D	0.497 D
4.00	0.444 fck D	0.499 D

Nore - Values of stress block parameters have boen tabulated for values of k up to 4.00 for information only. For construction of interaction diagrams it is generally adequate to consider values of k up to about $1 \cdot 2$.

3.2.3 Construction of Interaction Diagram -

 Design charts for combined axial compression and bending are given in the form of interaction diagrams in which curves for $P_{\mathrm{u}} / b D f_{c k}$ versus $M_{p} / b D^{2} f_{c k}$ are plotted for different values of $p / f_{\text {ck }}$, where p is the reinforcement percentage.3.2.3.1 For the case of purely axial compression, the points plotted on the y-axis of the charts are obtained as follows:

$$
\begin{aligned}
& P_{u}=0.446 f_{c k} b d+\frac{p b D}{100}\left(f_{\mathrm{sc}}-0.446 f_{c k}\right) \\
& \frac{P_{\mathrm{u}}}{f_{\mathrm{ck}} b D}=0.446+\frac{p}{100 f_{c k}}\left(f_{\mathrm{cc}}-0.446 f_{\mathrm{ck}}\right)
\end{aligned}
$$

where
f_{x} is the compressive stress in steel corresponding to a strain of 0.002 .

The second term within parenthesis represents the deduction for the concrete replaced by the reinforcement bars. This term is usually neglected for convenience. However, as a better approximation, a constant value corresponding to concrete grade M20 has been used in the present work, so that the error is negligibly small over the range of concrete mixes normally used. An accurate consideration of this term will necessitate the preparation of separate Charts for each grade of concrete, which is not considered worthwhile.
3.2.3.2 When bending moments are also acting in addition to axial load, the points for plotting the Charts are obtained by assuming different positions of neutral axis. For each position of neutral axis, the strain distribution across the section and the stress block parameters are determined as explained earlier. The stresses in the reinforcement are also calculated from the known strains. Thereafter the resultant axial force and the moment about the centroid of the section are calculated as follows:
a) When the neutral axis lies outside the section

$$
P_{\mathrm{u}}=C_{1} f_{\mathrm{ck}} b D+\sum_{i=1}^{n} \frac{p_{i} b D}{100}\left(f_{\mathrm{si}}-f_{\mathrm{ci}}\right)
$$

where
$C_{1}=$ coefficient for the area of stress block to be taken from Table H (see 3.2.2);
$p_{\mathrm{i}}=\frac{A_{s i}}{b D}$ where A_{si} is the area of reinforcement in the i th row;
$f_{\mathrm{si}}=$ stress in the i th row of reinforcement, compression being positive and tension being negative;
$f_{\mathrm{ci}}=$ stress in concrete at the level of the i th row of reinforcement; and
$n=$ number of rows of reinforcement.

The above expression can be written as

$$
\frac{P_{\mathrm{u}}}{f_{\mathrm{ck}} b D}=C_{1}+\sum_{i=1}^{n} \frac{p_{\mathrm{i}}}{100 f_{\mathrm{ck}}}\left(f_{\mathrm{si}}-f_{\mathrm{ci}}\right)
$$

Taking moment of the forces about the centroid of the section,

$$
\begin{aligned}
& M_{\mathrm{a}}=C_{1} f_{\mathrm{ck}} b D\left(\frac{D}{2}-C_{2} D .\right) \\
&+\sum_{i=1}^{n} \frac{p_{\mathrm{i}} b D}{100}\left(f_{\mathrm{si}}-f_{\mathrm{cl}}\right) y_{\mathrm{i}}
\end{aligned}
$$

where
$C_{2} D$ is the distance of the centroid of the concrete stress block, measured from the highly compressed edge; and
y_{i} is the distance from the centroid of the section to the ith row of reinforcement; positive towards the highly compressed edge and negative towards the least compiessed edge.

Dividing both sides of the equation by $f_{c k} b D^{2}$,

$$
\begin{aligned}
\frac{M_{u}}{f_{c k} b D^{2}}= & C_{1}\left(0 \cdot 5-C_{2}\right) \\
& +\sum_{i=1}^{n} \frac{p_{\mathrm{i}}}{f_{\mathrm{ck}} 100}\left(f_{\mathrm{si}}-f_{\mathrm{ci}}\right)\left(\frac{y_{i}}{D}\right)
\end{aligned}
$$

b) When the neutral axis lies within the section

In this case, the stress block parameters are simpler and they can be directly incorporated into the expressions which are otherwise same as for the earlier case. Thus we get the following expressions:

$$
\begin{aligned}
\frac{P_{\mathrm{u}}}{f_{\mathrm{ck}} b D}= & 0.36 k+\sum_{i=1}^{n} \frac{p_{\mathrm{i}}}{100 f_{\mathrm{ck}}}\left(f_{\mathrm{si}}-f_{\mathrm{ci}}\right) \\
\frac{M_{\mathrm{u}}}{f_{\mathrm{ck}} b D^{2}} & =0.36 k(0.5-0.416 k) \\
& +\sum_{i=1}^{n} \frac{p_{\mathrm{i}}}{f_{\mathrm{ck}} 100}\left(f_{\mathrm{si}}-f_{\mathrm{ci}}\right)\left(\frac{y_{\mathrm{i}}}{D}\right)
\end{aligned}
$$

where

$$
k=\frac{\text { Depth of neutral axis }}{D}
$$

An approximation is made for the value of f_{ci} for M20, as in the case of 3.2.3.1. For circular sections the procedure is same as above, except that the stress block parameters given earlier are not applicable; hence the section is divided into strips and summation is done for determining the forces and moments due to the stresses in concrete.

3.2.3.3 Charts for compression with bending -

 Charts for rectangular sections have been given for reinforcement on two sides (Charts 27 to 38) and for reinforcement on four sides (Charts 39 to 50). The Charts for the latter case have been prepared for a section with 20 bars equally distributed on all sides, but they can be used without significant error for any other number of bars (greater than 8) provided the bars are distributed equally on the four sides. The Charts for circular section (Charts 51 to 62) have been prepared for a section with 8 bars, but they can generally be used for sections with any number of bars but not less than 6. Charts have been given for three grades of steel and four values of d^{\prime} / D for each case mentioned above.The dotted lines in these charts indicate the stress in the bars nearest to the tension face of the member. The line for $f_{\mathrm{st}}=0$ indicates that the neutral axis lies along the outermost row of reinforcement. For points lying above this line on the Chart, all the bars in the section will be in compression. The line for $f_{\mathrm{st}}=f_{\mathrm{yd}}$ indicates that the outermost tension reinforcement reaches the design yield strength. For points below this line, the outermost tension reinforcement undergoes inelastic deformation while successive inner rows may reach a stress of $f_{y d}$. It should be noted that all these stress values are at the failure condition corresponding to the limit state of collapse and not at working loads.
3.2.3.4 Charts for tension with bending These Charts are extensions of the Charts for compression with bending. Points for plotting these Charts are obtained by assuming low values of k in the expressions given earlier. For the case of purely axial tension,

$$
\begin{aligned}
P_{\mathrm{u}} & =\frac{p b D}{100}\left(0.87 f_{\mathrm{y}}\right) \\
\frac{P_{\mathrm{u}}}{f_{\mathrm{ck}} b D} & =\frac{p}{100 f_{\mathrm{ck}}}\left(0.87 f_{\mathrm{y}}\right)
\end{aligned}
$$

Charts 66 to 75 are given for rectangular sections with reinforcement on two sides and Charts 76 to 85 are for reinforcement on four sides. It should be noted that these charts are meant for strength calculations
only; they do not take into account crack control which may be important for tension members.

Example 6 Square Column with Uniaxial Bending
 Determine the reinforcement to be provided in a square column subjected to uniaxial bending, with the following data:

Size of column	$45 \times 45 \mathrm{~cm}$
Concrete mix	M 25
Characteristic strength of reinforcement	$415 \mathrm{~N} / \mathrm{mm}^{2}$
Factored load (characteristic load multiplied by $\mathbf{\gamma r}$)	2500 kN
Factored moment	200 kN .m
Arrangement of reinforcement:	On two sides On four sides

(Assume moment due to minimum eccentricity to be less than the actual moment).

Assuming 25 mm bars with 40 mm cover, $d^{\prime}=40+12.5=52.5 \mathrm{~mm}=5.25 \mathrm{~cm}$ $d^{\prime} \mid D=5.25 / 45=0.12$
Charts for $d^{\prime} \mid D=0.15$ will be used

$$
\begin{aligned}
\frac{P_{\mathrm{u}}}{f_{\mathrm{ck}} b D} & =\frac{2500 \times 10^{3}}{25 \times 45 \times 45 \times 10^{2}}=0.494 \\
\frac{M_{\mathrm{u}}}{f_{\mathrm{c}} b D^{2}} & =\frac{200 \times 10^{\mathrm{s}}}{25 \times 45 \times 45 \times 45 \times 10^{3}}=0.088
\end{aligned}
$$

a) Reinforcement on two sides,

Referring to Chart 33, $p / f_{\mathrm{ck}}=0.09$
Percentage of reinforcement,

$$
p=0.09 \times 25-2.25
$$

$$
A_{\mathrm{s}}=p b D / 100=2.25 \times 45 \times 45 / 100
$$

$$
=45 \cdot 56 \mathrm{~cm}^{2}
$$

b) Reinforcement on four sides
from Chart 45 , $p / f_{\text {ck }}=0.10$

$$
\begin{aligned}
p & =0.10 \times 25=2.5 \\
A_{\mathrm{s}} & =2.5 \times 45 \times 45 / 100=50.63 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 7 Circular Column with Uniaxial Bending

Determine the reinforcement to be provided in a circular column with the following data:

Diameter of column	50 cm
Grade of concrete	M 20
Characteristic strength	$250 \mathrm{~N} / \mathrm{mm}^{2}$ for
of reinforcement	bars up to
	$20 \mathrm{~mm} \phi$
	$240 \mathrm{~N} / \mathrm{mm}^{2}$ for
	bars over
	$20 \mathrm{~mm} \phi$

Factored load
Factored moment
1600 kN
125 kN.m
Lateral reinforcement:
(a) Hoop reinforcement
(b) Helical reinforcement
(Assume moment due to minimum eccentricity to be less than the actual moment).

Assuming 25 mm bars with 40 mm cover, $d^{\prime}=40 \times 12.5=52.5 \mathrm{~mm}=5.25 \mathrm{~cm}$ $d^{\prime} / D=5 \cdot 25 / 50=0.105$

Charts for $d^{\prime} / D=0.10$ will be used.
(a) Column with hoop reinforcement

$$
\begin{aligned}
& \frac{P_{\mathrm{u}}}{f_{\text {ck }} D^{2}}=\frac{1600 \times 10^{3}}{20 \times 50 \times 50 \times 10^{2}}-0.32 \\
& \frac{M_{\mathrm{u}}}{f_{\mathrm{ck}} D^{3}}=\frac{125 \times 10^{\mathrm{e}}}{20 \times 50 \times 50 \times 50 \times 10^{3}}=0.05
\end{aligned}
$$

Referring to Chart 52 , for $f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$ $p / f_{c \mathrm{ck}}=0.87$

$$
\begin{aligned}
p & =0.87 \times 20=1.74 \\
A_{1} & =p \pi D^{2} / 400 \\
& =1.74 \times \pi \times 50 \times 50 / 400=34.16 \mathrm{~cm}^{2}
\end{aligned}
$$

For $f_{y}=240 \mathrm{~N} / \mathrm{mm}^{2}$,

$$
A_{\mathrm{s}}=34.16 \times 250 / 240=35 \cdot 58 \mathrm{~cm}^{2}
$$

(b) Column with Helical Reinforcement

According to 38.4 of the Code, the strength of a compression member with helical reinforcement is 1.05 times the strength of a similar member with lateral ties. Therefore, the given load and moment should be divided by 1.05 before referring to the chart.
Hence,

$$
\begin{aligned}
& \frac{P_{\mathrm{u}}}{f_{\mathrm{ck}} D^{2}}=\frac{0.32}{1.05}=0.305 \\
& \frac{M_{\mathrm{u}}}{f_{\mathrm{ck}} D^{3}}=\frac{0.05}{1.05}=0.048
\end{aligned}
$$

From Chart 52 , for $f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$, $p / f_{\text {ck }}=0.078$

$$
\begin{aligned}
p & =0.078 \times 20=1.56 \\
A_{\mathrm{s}} & =1.56 \times \pi \times 50 \times 50 / 400 \\
& =30.63 \mathrm{~cm}^{2}
\end{aligned}
$$

For $f_{y}=240 \mathrm{~N} / \mathrm{mm}^{2}, A_{\mathrm{s}}=30.63 \times 250 / 240$

$$
=31.91 \mathrm{~cm}^{2}
$$

According to 38.4.1 of the Code the ratio of the volume of helical reinforcement to the volume of the core shall not be less than $0.36\left(A_{\mathrm{g}} / A_{\mathrm{c}}-1\right) f_{\mathrm{ck}} / f_{\mathrm{y}}$ where A_{g} is the gross area of the section and A_{c} is the area of the core measured to the outside diameter of the helix. Assuming 8 mm dia bars for the helix,

$$
\begin{aligned}
& \text { Core diameter }=50-2(4.0-0.8) \\
& \quad=43.6 \mathrm{~cm} \\
& A_{\varepsilon} / A_{\mathrm{c}}=50^{2} / 43 \cdot 6^{2}=1.315 \\
& 0.36\left(A_{\varepsilon} / A_{\mathrm{c}}-1\right) f_{\mathrm{ck}} / f_{\mathrm{y}} \\
& \quad=0.36 \times 0.250 \\
& =0.0091
\end{aligned}
$$

Volume of helical reinforcement

Volume of core

$$
=\frac{A_{\mathrm{sh} \pi} \pi \cdot(42 \cdot 8)}{\frac{\pi}{4}\left(43 \cdot 6^{2}\right) s_{\mathrm{h}}}=\frac{0.09 A_{\text {sh }}}{s_{\mathrm{h}}}
$$

where, A_{sh} is the area of the bar forming the helix and s_{h} is the pitch of the helix. In order to satisfy the codal requirement,

$$
0.09 A_{\mathrm{sh}} / s_{\mathrm{h}} \geqslant 0.0091
$$

For 8 mm dia bar, $A_{\text {sh }}=0.503 \mathrm{~cm}^{2}$

$$
\begin{gathered}
s_{\mathrm{h}} \leqslant
\end{gathered} \frac{0.09 \times 0.503}{0.0091}
$$

3.3 COMPRESSION MEMBERS SUBJECT TO BIAXIAL BENDING

Exact design of members subject to axial load and biaxial bending is extremely laborious. Therefore, the Code permits the design of such members by the following equation:

$$
\left(\frac{M_{\mathrm{ux}}}{M_{\mathrm{ux}}}\right)^{\propto_{\mathrm{n}}}+\left(\frac{M_{\mathrm{uy}}}{M_{\mathrm{uy}}}\right)^{\propto_{\mathrm{n}}} \leqslant 1 \cdot 0
$$

'where
$M_{u x}, M_{u y}$ are the moments about x and y axes respectively due to design loads,
$M_{\text {ux1 }}, M_{\text {uy }}$ are the maximum uniaxial moment capacities with an axial load P_{u}, bending about x and y axes respectively, and
α_{n} is an exponent whose value depends on $P_{\mathrm{u}} / P_{\mathrm{uz}}$ (see table below) where $P_{\mathrm{uz}}=0.45 f_{\mathrm{ck}} A_{\mathrm{c}}+0.75 f_{\mathrm{y}} A_{\mathrm{s}}:$

$P_{\mathrm{u}} / P_{\mathrm{uz}}$	\propto_{n}
50.2	1.0
$\geqslant 0.8$	2.0

For intermediate values, linear interpolation may be done. Chart 63 can be used for evaluating $P_{u z}$.

For different values of $P_{\mathrm{u}} / P_{\mathrm{uz}}$, the appropriate value of \propto_{n} has been taken and curves for the equation
$\left(\frac{M_{\mathrm{ux}}}{M_{\mathrm{ux}}}\right)^{\propto_{\mathrm{n}}}+\left(\frac{M_{\mathrm{uy}}}{M_{\mathrm{uy}}}\right)^{\propto_{\mathrm{n}}}=1.0$ have been plotted in Chart 64.

Example 8 Rectangular Column with Biaxial Bending

Determine the reinforcement to be provided in a short column subjected to biaxial bending, with the following data:

Size of column	$40 \times 60 \mathrm{~cm}$
Concrete mix Characteristic strength of reinforcement	$\mathbf{M 1 5} 15 \mathrm{~N} / \mathrm{mm}^{8}$
Factored load, P_{a}	1600 kN
Factored moment acting	120 kN
parallel to the larger dimension, M_{ar}	
Factored moment acting parallel to the shorter dimension, M_{ay}	

Moments due to minimum eccentricity are less than the values given above.

Reinforcement is distributed equally on four sides.

As a first trial assume the reinforcement percentage, $p=1 \cdot 2$
$p / f_{\text {ck }}=1.2 / 15=0.08$
Uniaxial moment capacity of the section about $x x$-axis:

$$
d^{\prime} \left\lvert\, D=\frac{5.25}{60}=0.0875\right.
$$

Chart for $d^{\prime} / D=0.1$ will be used.
$P_{\mathrm{u}} / f_{\text {ck }} b D=\frac{1600 \times 10^{3}}{15 \times 40 \times 60 \times 10^{2}}=0.444$
Referring to Chart 44,

$$
M_{\mathrm{u}} / f_{\text {ck }} b D^{2}=0.09
$$

$\therefore M_{\mathrm{ux} 1}=0.09 \times 15 \times 40 \times 60^{2} \times 10^{3} / 10^{6}$

$$
=194.4 \mathrm{kN} . \mathrm{m}
$$

Uniaxial moment capacity of the section about $y y$-axis:

$$
d^{\prime} \left\lvert\, D=\frac{5 \cdot 25}{40}=0 \cdot 131\right.
$$

Chart for $d^{\prime} \mid D=0.15$ will be used.
Referring to Chart 45,

$$
M_{\mathrm{u}} / f_{\mathrm{ck}} b D^{2}=0.083
$$

$\therefore M_{\mathrm{uy2}}=0.083 \times 15 \times 60 \times 40^{2} \times 10^{3} / 10^{6}$
$=119.52 \mathrm{kN} . \mathrm{m}$
Calculation of P_{uz} :
Referring to Chart 63 corresponding to $p=1 \cdot 2, f_{y}=415$ and $f_{c k}=15$,
$\frac{P_{\mathrm{uz}}}{A_{\mathrm{z}}}=10.3 \mathrm{~N} / \mathrm{mm}^{2}$
$\therefore \quad P_{\mathrm{uz}}=10.3 A_{\mathrm{z}}=10.3 \times 40 \times 60 \times$ $10^{2} / 10^{3} \mathrm{kN}$
$=2472 \mathrm{kN}$
$\begin{aligned} & \frac{P_{\mathrm{u}}}{P_{\mathrm{uz}}}=\frac{1600}{2472}=0.647 \\ & \frac{M_{\mathrm{ux}}}{M_{\mathrm{ux1}}}=\frac{120}{194.4}=0.617 \\ & M_{\mathrm{ug}} \\ & M_{\mathrm{wy1}}\end{aligned}=\frac{90}{119.52}=0.753$
Referring to Chart 64, the permissible value of $\frac{M_{\mathrm{ax}}}{M_{\mathrm{axI}}}$ corresponding to the above values of $\frac{M_{u y}}{M_{u y 1}}$ and $\frac{P_{u}}{P_{u z}}$ is equal to 0.58.

The actual value of 0.617 is only slightly higher than the value read from the Chart. This can be made up by slight increase in reinforcement.
$A_{s}=\frac{1.2 \times 40 \times 60}{100}=28.8 \mathrm{~cm}^{2}$
12 bars of 18 mm will give $A_{3}=30.53 \mathrm{~cm}^{2}$
Reinforcement percentage provided,
$p=\frac{30.53 \times 100}{60 \times 40}=1.27$
With this percentage, the section may be rechecked as follows:
$p / f_{\text {ck }}=1 \cdot 27 / 15=0.0847$
Referring to Chart 44,
$\frac{M_{u}}{f_{\text {ck }} b D^{2}}=0.095$
$\therefore M_{u x_{1}}=0.095 \times 15 \times 40 \times 60^{2} \times 10^{2} / 10^{6}$ $=205 \cdot 2 \mathrm{kN} . \mathrm{m}$
Referring to Chart 45
$\frac{M_{u}}{f_{\text {ck }} b D^{2}}=0.085$
$\therefore M_{u y_{1}}=0.085 \times 15 \times 60 \times 40^{2} \times 10^{3} / 10^{6}$
$=122.4 \mathrm{kN} . \mathrm{m}$
Referring to Chart 63,
$\frac{P_{u z}}{A_{\varepsilon}}=10.4 \mathrm{~N} / \mathrm{mm}^{2}$
$\therefore \quad P_{\mathrm{uz}}=10.4 \times 60 \times 40 \times 10^{2} / 10^{3}$
$=2496 \mathrm{kN}$
$P_{\mathrm{u}} / P_{\mathrm{uz}}=\frac{1600}{2496}=0.641$
$M_{u x} / M_{u x x}=\frac{120}{205.2}=0.585$
$M_{\mathrm{uy}} / M_{\mathrm{uy}_{1}}=\frac{90}{122.4}=0.735$
Referring to Chart 64,
Corresponding to the above values of $\frac{M_{\mathrm{uy}}}{M_{\mathrm{uy}}}$ and $\frac{P_{\mathrm{u}}}{P_{\mathrm{uz}}}$, the permissible value of $\frac{M_{\mathrm{ux}}}{M_{\mathrm{ux}}^{1}} \mathrm{i} ~ 0.6$.
Hence the section is O.K.

3.4 SLENDER COMPRESSION MEMBERS

When the slenderness ratio $\frac{l_{\text {ex }}}{D}$ or $\frac{l_{\text {ey }}}{b}$ of a compression member exceeds 12 , it is considered to be a slender compression member (see 24.1.2 of the Code); $l_{\text {ex }}$ and $l_{\text {ey }}$ being the effective lengths with respect to the major axis and minor axis respectively. When a compression member is slender with respect to the major: axis, an additional moment $M_{\text {ax }}$ given by the following equation (modified as indicated later) should be taken into account in the design (see 38.7.1 of the Code) :

$$
M_{\mathrm{ax}}=\frac{P_{\mathrm{u}} D}{2000}\left(\frac{l_{\mathrm{ex}}}{D}\right)^{2}
$$

Similarly, if the column is slender about the minor axis an additional moment $M_{a y}$ should be considered.

$$
M_{\mathrm{ay}}=\frac{P_{\mathrm{u}} b}{2000}\left(\frac{l_{\mathrm{cy}}}{b}\right)^{2}
$$

The expressions for the additional moments can be written in the form of eccentricities of load, as follows:

$$
M_{\mathrm{ux}}=P_{\mathrm{u}} e_{\mathrm{ax}}
$$

where

$$
\begin{aligned}
& e_{\mathrm{ax}}=\frac{D}{2000}\left(\frac{l_{\mathrm{ex}}}{D}\right)^{2} \\
& \frac{e_{\mathrm{ax}}}{D}=\frac{1}{2000}\left(\frac{l_{\mathrm{ex}}}{D}\right)^{2}
\end{aligned}
$$

Table I gives the values $\frac{e_{\mathrm{ax}}}{D}$ or $\frac{e_{\mathrm{ny}}}{b}$ for different values of slenderness ratio.

TABLE I ADDITIONAL ECCENTRICITY FOR SLENDER COMPRESSION MEMBERS
(Clause 3.4)

$\begin{aligned} & l_{\text {aex }} / D \\ & \text { or } \\ & l_{\text {cy }} / b \end{aligned}$	$\begin{aligned} & e_{a x} / D \\ & \text { or } \\ & e_{a y} / b \end{aligned}$	$\begin{gathered} l_{\text {ex }} / D \\ \text { or } \\ l_{\text {cy }} / b \end{gathered}$	$\begin{aligned} & e_{a x} / D \\ & \text { or } \\ & e_{a y} / b \end{aligned}$
(1)	(2)	(3)	(4)
12	0.072	25	$0 \cdot 313$
13	0.085	30	0.450
14	0.098	35	0.613
15	0.113	40	0.800
16	$0 \cdot 128$	45	1.013
17	$0 \cdot 145$	50	$1 \cdot 250$
18	$0 \cdot 162$	55	1.513
19	0.181	60	$1 \cdot 800$
20	$0 \cdot 200$		

In accordance with 38.7.1.1 of the Code, the additional moments may be reduced by the multiplying factor k given below:

$$
k=\frac{P_{\mathrm{uz}}-P_{\mathrm{u}}}{P_{\mathrm{uz}}-P_{\mathrm{b}}} \leqslant 1
$$

where
$P_{\mathrm{uz}}=0.45 f_{\mathrm{ck}} A_{\mathrm{c}}+0.75 f_{\mathrm{y}} A_{\mathrm{s}}$, which may be obtained from Chart 63, and P_{b} is the axial load corresponding to the condition of maximum compressive strain of 0.0035 in concrete and tensile strain of 0.002 in outermost layer of tension steel.

Though this modification is optional according to the Code, it should always be taken advantage of, since the value of k could be substantially less than unity.

The value of P_{b} will depend on antangement of reinforcement and the cover ratio $d^{\prime} \mid D$, in addition to the grades of concrete and steel. The values of the coefficients required for evaluating P_{b} for various cases are given in Table 60. The values given in Table 60 are based on the same assumptions as for members with axial load and uniaxial bending.

The expression for k can be written as follows:

$$
k=\frac{1-P_{\mathrm{u}} / P_{\mathrm{uz}}}{1-P_{\mathrm{b}} / P_{\mathrm{uz}}} \leqslant 1
$$

Chart 65 can be used for finding the ratio of k after calculating the ratios $P_{u} / P_{u z}$ and $P_{\mathrm{b}} / P_{\mathrm{uz}}$.

Example 9 Slender Column (with biaxial bending)

Determine the reinforcement required for a column which is restrained against sway, with the following data:

Size of column	$40 \times 30 \mathrm{~cm}$
Concrete grade	M 30
Characteristic strength of reinforcement	$415 \mathrm{~N} / \mathrm{mm}^{2}$
Effective length for bending parallel to larger dimension, $l_{\text {ex }}$	6.0 m
Effective length for bending parallel to shorter dimension, $l_{\text {ey }}$	5.0 m
Unsupported length	7.0 m
Factored load	1500 kN
Factored moment in the direction of larger dimension	$40 \mathrm{kN} . \mathrm{m}$ at top and 22.5 kN .m at bottom

Factored moment in the $30 \mathrm{kN} . \mathrm{m}$ at top direction of shorter and $20 \mathrm{kN} . \mathrm{m}$ dimension at bottom

The column is bent in double curvature. Reinforcement will be distributed equally on four sides.

$$
\begin{aligned}
& \frac{l_{\mathrm{ex}}}{D}=\frac{6.0 \times 100}{40}=15.0>12 \\
& \frac{l_{\mathrm{ey}}}{b}=\frac{5.0 \times 100}{30}=16.7>12
\end{aligned}
$$

Therefore the column is slender about both the axes.

From Table I,

$$
\begin{aligned}
& \text { For } \frac{l_{\mathrm{ex}}}{D}=15, e_{\mathrm{x}} / D=0.113 \\
& \text { For } \frac{l_{\mathrm{ey}}}{b}=16.7, e_{y} / b=0.140
\end{aligned}
$$

Additional moments:
$M_{\mathrm{ax}}=P_{\mathrm{u}} e_{\mathrm{x}}=1500 \times 0.113 \times \frac{40}{100}=67.8 \mathrm{kN} . \mathrm{m}$
$M_{\mathrm{ay}}=P_{\mathrm{u}} e_{\mathrm{y}}=1500 \times 0.14 \times \frac{30}{100}=63.0 \mathrm{kN} . \mathrm{m}$
The above moments will have to be reduced in accordance with 38.7.1.1 of the Code; but multiplication factors can be evaluated only if the reinforcement is known.

For first trial, assume $p=3.0$ (with reinforcement equally on all the four sides).
$A_{\mathrm{E}}=40 \times 30=1200 \mathrm{~cm}^{2}$
From Chart 63, $P_{u z} / A_{\mathrm{g}}=22.5 \mathrm{~N} / \mathrm{mm}^{2}$
$\therefore P_{\mathrm{uz}}=22.5 \times 1200 \times 10^{2} / 10^{3}=2700 \mathrm{kN}$
Calculation of P_{b} :
Assuming 25 mm dia bars with 40 mm cover
d^{\prime} / D (about $x x$-axis) $=\frac{5 \cdot 25}{40}=0.13$
Chart or Table for $d^{\prime} \mid d=0.15$ will be used.
$d^{\prime} \mid D$ (about $y y$-axis) $=\frac{5.25}{30}=0.17$
Chart or Table for $d^{\prime} / d=0.20$ will be used.
From Table 60,

$$
\begin{aligned}
& P_{\mathrm{b}}(\text { about } x x \text {-axis })=\left(k_{1}+k_{2} \frac{p}{f_{\mathrm{ck}}}\right) f_{\mathrm{ck}} b D \\
& \begin{aligned}
P_{\mathrm{bx}} & =\left(0.196+0.203 \times \frac{3}{30}\right) \\
& \times 30 \times 30 \times 40 \times 10^{2} / 10^{3} \\
& =779 \mathrm{kN}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& P_{\mathrm{b}}(\text { about } y y \text {-axis })=(\left.0.184+\frac{0.028 \times 3}{30}\right) \\
& \times 40 \times 30 \times 30 \\
& \times 10^{2} / 10^{3} \\
& P_{\mathrm{by}}= 672 \mathrm{kN} \quad \\
& \begin{aligned}
k_{x}= & \frac{P_{\mathrm{uz}}-P_{\mathrm{u}}}{P_{\mathrm{uz}}-P_{\mathrm{bx}}}=\frac{2700-1500}{2700-779} \\
= & 0.625 \\
k_{\mathrm{y}}= & \frac{P_{\mathrm{uz}}-P_{\mathrm{u}}}{P_{\mathrm{uz}}-P_{\mathrm{by}}}=\frac{2700-1500}{2700-672} \\
= & 0.592
\end{aligned}
\end{aligned}
$$

The additional moments calculated earlier, will now be multiplied by the above values of k.

$$
\begin{aligned}
& M_{\mathrm{ax}}=67.8 \times 0.625=42.4 \mathrm{kN} . \mathrm{m} \\
& M_{\mathrm{ay}}=63.0 \times 0.592=37.3 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

The additional moments due to slenderness effects should be added to the initial moments after modifying the initial moments as follows (see Note 1 under 38.7.1 of the Code):

$$
\begin{aligned}
& M_{\mathrm{ux}}=(0.6 \times 40-0.4 \times 22.5)=15.0 \mathrm{kN} . \mathrm{m} \\
& M_{\mathrm{uy}}=(0.6 \times 30-0.4 \times 20)=10.0 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

The above actual moments should be compared with those calculated from minimum eccentricity consideration (see 24.4 of the Code) and greater value is to be taken as the initial moment for adding the additional moments.

$$
\begin{aligned}
& e_{\mathrm{x}}=\frac{l}{500}+\frac{D}{30}=\frac{700}{500}+\frac{40}{30}=2.73 \mathrm{~cm} \\
& e_{\mathrm{y}}=\frac{l}{500}+\frac{b}{30}=\frac{700}{500}+\frac{30}{30}=2.4 \mathrm{~cm}
\end{aligned}
$$

Both e_{x} and e_{y} are greater than 2.0 cm .
Moments due to minimum eccentricity:

$$
\begin{aligned}
M_{\mathrm{ux}}=1500 \times \frac{2.73}{100} & =41.0 \mathrm{kN} . \mathrm{m} \\
& >15.0 \mathrm{kN} . \mathrm{m} \\
M_{\mathrm{uy}}=1500 \times \frac{2.4}{100} & =36.0 \mathrm{kN} . \mathrm{m} \\
& >10.0 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

\therefore Total moments for which the column is to be designed are:

$$
\begin{aligned}
& M_{\mathrm{ux}}=41 \cdot 0+42 \cdot 4=83 \cdot 4 \mathrm{kN} . \mathrm{m} \\
& M_{\mathrm{uy}}=36 \cdot 0+37 \cdot 3=73 \cdot 3 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

The section is to be checked for biaxial bending.

$$
\begin{aligned}
P_{u} / f_{\text {ck }} b D & =\frac{1500 \times 10^{3}}{30 \times 30 \times 40 \times 10^{2}} \\
& =0.417
\end{aligned}
$$

$$
p / f_{c k}=\frac{3 \cdot 0}{30}=0 \cdot 10
$$

Referring to Chart $45\left(d^{\prime} / D=0 \cdot 15\right)$,

$$
M_{\mathrm{u}} / f_{\mathrm{ck}} b D^{2}=0 \cdot 104
$$

$\therefore \quad M_{\mathrm{ux} 1}=0.104 \times 30 \times 30 \times 40 \times 40 \times$ $10^{3} / 10^{6}$
$=149 \cdot 8 \mathrm{kN} . \mathrm{m}$
Referring to Chart $46\left(d^{\prime} \mid D=0 \cdot 20\right)$, $M_{\mathrm{o}} / f_{\text {ck }} J D^{2}=0.096$
$\therefore M_{\mathrm{uy1}}=0.096 \times 30 \times 40 \times 30^{\prime} \times 30 \times$ $10^{3} / 10^{6}$
$=103.7 \mathrm{kN} . \mathrm{m}$
$\frac{M_{\mathrm{ux}}}{M_{\mathrm{ux}_{1}}}=\frac{83.4}{149 \cdot 8}=0.56$

$$
\begin{aligned}
& \frac{M_{\mathrm{uy}}}{M_{\mathrm{uy} 1}}=\frac{73.3}{103.7}=0.71 \\
& P_{\mathrm{u}} / P_{\mathrm{uz}}=\frac{1500}{2700}=0.56
\end{aligned}
$$

Referring to Chart 64, the maximum allowable value of $M_{\mathrm{ux}} / M_{\mathrm{ux} 1}$ corresponding to the above values of $M_{\mathrm{uy}} / M_{\mathrm{uyz}}$ and $P_{\mathrm{u}} / P_{\mathrm{uz}}$ is 0.58 which is slightly higher than the actual value of 0.56 . The assumed reinforcement of 3.0 percent is therefore satisfactory.

$$
\begin{aligned}
A_{\mathrm{S}} & =p b D / 100=3.0 \times 30 \times 40 / 100 \\
& =36.0 \mathrm{~cm}^{2}
\end{aligned}
$$

Chart 25 AXIAL COMPRESSION

Chart 26 AXIAL COMPRESSION

Chart 27 COMPRESSION WITH BENDING - Rectangular
Section - Reinforcement Distributed Equally on Two Sides

Chart 28 COMPRESSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 29 COMPRESSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 30 COMPRESSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 31 COMPRESSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 32 COMPRESSION WITH BENDING - Rectangular Section - Reinforceiment Distributed Equally on Two Sides

Chart 33 COMPRESSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 34 COMPRESSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 35 COMPRESSION WITH BENDING - Rectanguiar Section - Reinforcement Distributed Equally on Two Sides

Chart 36 COMPRESSION WITH BENDING-Rectangular Section - Reinforcement Distrihuted Equally on Two Sides

Chart 37 COMPRESSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 38 COMPRESSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 39 COMPRESSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 40 COMPRESSION WITH BENDING-Rectangular
Section - Reinforcement Distributed Equally on Four Sides

Chart 41 COMPRESSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 42 COMPRESSION WITH BENDING-Rectangular
Section - Reinforcement Distributed Equally on Four Sides

Chart 43 COMPRESSION WITH BENDING - Rectangular
Section - Reinforcement Distributed Equally on Four Sides

Chart 44 COMPRESSION WITH BENDING-Rectangular

 Section - Reinforcement Distributed Equally on Four Sides

Chart 45 COMPRESSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 45 COMPRESSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 47 COMPRESSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 48 COMPRESSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 49 COMPRESSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 50 COMPRESSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 51 COMPRESSION WITH BENDING - Circular Section

Chart 52 COMPRESSION WITH BENDING - Circular Section

Chart 53 COMPRESSION WITH BENDING - Circular Section

 8 ,

$$
0.8
$$

$$
0^{0.18}
$$

.
4

Chart 54 COMPRESSION WITH BENDING - Circular Section

Chart 55 COMPRESSION WITH BENDING - Circular Section

Chart 56 COMPRESSION WITH BENDING - Circular Section

Chart 57 COMPRESSION WITH BENDING-Circular Section

Chart 58 COMPRESSION WITH BENDING-Circular Section

Chart 59 COMPRESSION WITH BENDING - Circular Section

Chart 60 COMPRESSION WITH BENDING - Circular Section

Chart 62 COMPRESSION WITH BENDIMG - Cirrular Section

Chart 63 values of P_{uz} for COMPRESSION MEMBERS

Chatt 64 bIAXIAL BENDING IN COMPRESSION MEMBERS

Chart 65 SLENDER COMPRESSION MEMBERS Multiplying Factor k for Additional Moments

$$
k=\frac{P_{u z}-P_{u}}{P_{u Z}-P_{0}}
$$

Chart 66 TENSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 67 TENSION WITH BENDING - Rectangular

 Section - Reinforcement Distributed Equally on Two Sides

Chart 68 TENSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 69 TENSION WITH BENDING - Rectangular

 Section - Reinforcement Distributed Equally on Two Sides

Chart 70 TENSION WITH BENDING - Rectangular

 Section - Reinforcement Distributed Equally on Two Sides

Chart 71 TENSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 72 TENSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 73 TENSION WITH BENDING - Rectangular
Section - Reinforcement Distributed Equally on Two Sides

Chart 74 TENSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Two Sides

Chart 75 TENSION WITH BENDING - Rectangular

 Section - Reinforcement Distributed Equally on Two Sides

Chart 76 TENSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 77 TENSION WITH BENDING - Rectangular
Section - Reinforcement Distributed Equally on Four Sides

Chart 78 TENSION WITH , BENDING-Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 79 TENSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 80 TENSION WITH BENDING - Rectangular

 Section - Reinforcement Distributed Equally on Four Sides

Chart 81 TENSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 82 TENSION WITH BENDING - Rectangular Section - Reinforcement Distributed Equally on Four Sides

y_{y} 500

Chart 83 TENSION WITH BENDING - Rectangular
Section - Reinforcoment Distributad Equally on Four Sides

Chart 84 TENSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Four Sides

Chart 85 TENSION WITH BENDING-Rectangular Section - Reinforcement Distributed Equally on Four Sides


```
TABLE 60 SLENDER COMPRESSION MEMBERS - VALUES OF P
    Rectngeular Sections:
    Pb/facbD = kit k
    Circular Sections:
    P|fck D
```

Values of $\boldsymbol{k}_{\mathbf{1}}$

Section	0.10	0.15	0.20	
	0.05	0.196	0.184	
Rectangular	0.219	0.207	0.149	0.138
Circular	0.172	0.160		

Values of $\mathbf{k}_{\mathbf{z}}$

Section	$\stackrel{f_{y}}{f_{y}}$	$d^{\prime \prime} D$			
		0.05	$0 \cdot 10$	0.15	0.20
Rectangular; equal reinforcement on two opposite sides	$\begin{aligned} & 250 \\ & 415 \\ & 500 \end{aligned}$	$\begin{array}{r} -0.045 \\ 0.096 \\ 0.213 \end{array}$	$\begin{array}{r} -0.045 \\ 0.082 \\ 0.173 \end{array}$	$\begin{gathered} -0.045 \\ 0.046 \\ 0.104 \end{gathered}$	$\begin{aligned} & -0.045 \\ & =0.022 \\ & -0.001 \end{aligned}$
Rectangular; equal reinforcement on four sides	$\begin{aligned} & 250 \\ & 415 \\ & 500 \end{aligned}$	$\begin{aligned} & 0.215 \\ & 0.424 \\ & 0.545 \end{aligned}$	$\begin{aligned} & 0.146 \\ & 0.328 \\ & 0-425 \end{aligned}$	$\begin{aligned} & 0-061 \\ & 0-203 \\ & 0.256 \end{aligned}$	$\begin{array}{r} -0.011 \\ 0-028 \\ 0-040 \end{array}$
Circular	$\begin{aligned} & 250 \\ & 415 \\ & 500 \end{aligned}$	$\begin{aligned} & 0.193 \\ & 0.410 \\ & 0.543 \end{aligned}$	$\begin{aligned} & 0.148 \\ & 0.323 \\ & 0.443 \end{aligned}$	$\begin{aligned} & 0-077 \\ & 0.201 \\ & 0.291 \end{aligned}$	$\begin{array}{r} -0.020 \\ 0.036 \\ 0.056 \end{array}$

As in the Original Standard, this Page is Intentionally Left Blank

SHEAR AND TORSION

As in the Original Standard, this Page is Intentionally Left Blank

4. SHEAR AND TORSION

4.1 DESIGN SHEAR STRENGTH OF CONCRETE

- The design shear strength of concrete is given in Table 13 of the Code. The values given in the Code are based on the following equation:

$$
\tau_{c}=\frac{0.85 \sqrt{0.8 f_{c k}}(\sqrt{1+5} \beta-1)}{6 \beta}
$$

where
$\beta=0.8 \mathrm{f}_{\mathrm{ck}} / 6.89 p_{\text {b }}$, but not less than 1.0 , and $p_{t}=100 A_{\mathrm{st}} / b_{w} d$.

The value of τ_{c} corresponding to p_{t} varying from 0.20 to 3.00 at intervals of 0.10 are given in Table 61 for different grades of concrete.

4.2 NOMINAL SHEAR STRESS

The nominal shear stress τ_{v} is calculated by the following equation:

$$
\tau_{\mathrm{v}}=\frac{V_{\mathrm{u}}}{b d}
$$

where

$$
V_{u} \text { is the shear force. }
$$

When τ_{v} exceeds τ_{c}, shear reinforcement should be provided for carrying a shear equal to $V_{u}-\tau_{c} b d$. The shear stress τ_{v} should not in any case exceed the values of $\tau_{c, \text { max, }}$, given in Table J. (If $\tau_{v}>\tau_{c, \text { max, }}$, the section is to be redesigned.)

TABLE J MAXIMUM SHEAR STRESS re,max Concrete Gradr M15 M20 M25 M30 M35 M40
$\begin{array}{llllllll}\tau c, \max , \mathrm{~N} / \mathrm{mm}^{2} & 2.5 & 2.8 & 3.1 & 3.5 & 3.7 & 4.0\end{array}$

4.3 SHEAR REINFORCEMENT

The design shear strength of vertical stirrups is given by the following equation:

$$
V_{\mathrm{us}}=\frac{0.87 f_{\mathrm{s}} A_{\mathrm{sv}} d}{s_{\mathrm{v}}}
$$

where
$A_{3 v}$ is the total cross sectional area of the vertical legs of the stirrups, and s_{v} is the spacing (pitch) of the stirrups.

The shear strength expressed as $V_{u s} / d$ are given in Table 62 for different diameters and spacings of stirrups, for two grades of steel.

For a series of inclined stirrups, the value of $V_{u s} / d$ for vertical stirrups should be multiplied by ($\sin \alpha+\cos \alpha$) where α is the angle between the inclined stirrups and the axis of the member. The multiplying factor works out to 1.41 and 1.37 for 45° and 60° angles respectively.

> For a bent up bar,
> $V_{u s}=0.87 f_{y} A_{\mathrm{cv}} \sin \propto$

Values of V_{us} for different sizes of bars, bent up at 45° and 60° to the axis of the member are given in Table 63 for two grades of steel.

4.4 TORSION

Separate Charts or Tables are not given for torsion. The method of design for torsion is based on the calculation of an equivalent shear force and an equivalent bending moment. After determining these, some of the Charts and Tables for shear and flexure can be used. The method of design for torsion is illustrated in Example 11.

Example 10 Shear

Determine the shear reinforcement (vertical stirrups) required for a beam section with the following data:

Beam size	$30 \times 60 \mathrm{~cm}$
Depth of beam	60 cm
Concrete grade	M 15
Characteristic strength	$250 \mathrm{~N} / \mathrm{mm}^{2}$
of stirrup reinforcement Tensile reinforcement 0.8 percentage Factored shear force, $V_{u}$$\quad 180 \mathrm{kN}$	

Assuming 25 mm dia bars with 25 mm cover,
$d=60-\frac{2.5}{2}-2.5=56.25 \mathrm{~cm}$
Shear stress, $\tau_{v}=\frac{V_{u}}{b d}=\frac{180 \times 10^{3}}{30 \times 56.25 \times 10^{2}}$

$$
=1.07 \mathrm{~N} / \mathrm{mm}^{2}
$$

From Table J for M15, $\tau_{c, \text { max }}=2.5 \mathrm{~N} / \mathrm{mm}^{2}$ τ_{v} is less than $\tau_{c, \text { max }}$

From Table 61, for $P_{t}=0.8, \tau_{c}=0.55 \mathrm{~N} / \mathrm{mm}^{2}$
Shear capacity of concrete section $=\tau_{c} b d$ $=0.55 \times 30 \times 56.25 \times 10^{2} / 10^{3}=92.8 \mathrm{kN}$

Shear to be carried by stirrups, $V_{\mathrm{us}}=V_{\mathrm{s}}-\tau_{\mathrm{c}} b d$ $=180-92.8=87.2 \mathrm{kN}$
$\frac{V_{\mathrm{us}}}{d}=\frac{87.2}{56.25}=1.55 \mathrm{kN} / \mathrm{cm}$
Referring to Table 62, for steel $f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$. Provide 8 mm diameter two legged vertical stirrups at 14 cm spacing.

Example 11 Torsion

Determine the reinforcements required for a rectangular beam section with the following data:

Size of the beam	$30 \times 60 \mathrm{~cm}$
Concrete grade Characteristic strength of steel	$\mathbf{M 1 5 ~ N} / \mathrm{mm}^{2}$
Factored shear force	95 kN
Factored torsional	

Assuming 25 mm dia bars with 25 mm cover,

$$
d=60-2 \cdot 5-\frac{2 \cdot 5}{2}=56 \cdot 25 \mathrm{~cm}
$$

Equivalent shear,

$$
\begin{gathered}
V_{c}=V+1 \cdot 6\left(\frac{\mathrm{~T}}{\mathrm{~b}}\right) \\
=95+1.6 \times \frac{45}{0.3}=95+240=335 \mathrm{kN}
\end{gathered}
$$

Equivalent shear stress.

$$
\tau_{\mathrm{ve}}=\frac{V_{e}}{b d}=\frac{335 \times 10^{3}}{30 \times 56.25 \times 10^{2}}=1.99 \mathrm{~N} / \mathrm{mm}^{2}
$$

From Table J, for M15, $\tau_{c, \text { max }}=2.5 \mathrm{~N} / \mathrm{mm}^{2}$ τ_{ve} is less than $\tau_{c, \text { max }}$; hence the section does not require revision.
From Table 61, for an assumed value of $p_{\mathrm{t}}=0.5$,

$$
\tau_{\mathrm{c}}=0.46 \mathrm{~N} / \mathrm{mm}^{2}<\tau_{\mathrm{ve}}
$$

Hence longitudinal and transverse reinforcements are to be designed Longitudinal reinforcement (see 40.4.2 of the Code): Equivalent bending moment,

$$
\begin{aligned}
M_{\mathrm{e}_{1}} & =M_{\mathrm{u}}+M_{\mathrm{l}} \\
& =M_{\mathrm{u}}+\frac{T_{\mathrm{u}}(1+D / b)}{1 \cdot 7} \\
& =115+45\left(1+\frac{60}{30}\right) / 1.7 \\
& =115+79.4 \\
& =194.4 \mathrm{kN} . \mathrm{m} \\
M_{\mathrm{e}_{1}} / b d^{2} & =\frac{194.4 \times 10^{3}}{30 \times(56.25)^{2} \times 10^{3}}=2.05 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Referring to Table 1, corresponding to $M_{4} / b d^{2}=2.05$

$$
\begin{aligned}
p_{1} & =0.708 \\
A_{21} & =0.708 \times 30 \times 56.25 / 100=11.95 \mathrm{~cm}^{2}
\end{aligned}
$$

Provide 4 bars of 20 mm dia ($A_{\mathrm{st}}=12.56 \mathrm{~cm}^{2}$) on the flexural tensile face. As M_{i} is less than M_{u}, we need not consider $M_{\text {eq }}$ according to 40.4.2.1 of the Code. Therefore, provide only two bars of 12 mm dia on the compression face, one bar being at each corner.

As the depth of the beam is more than 45 cm , side face reinforcement of 0.05 percent on each side is to be provided (see 25.5.1.7 and 25.5.1.3 of the Code). Providing one bar at the middle of each side,
Spacing of bar $=53.4 / 2=26.7 \mathrm{~cm}$
Area required for each bar $=\frac{0.05 \times 30 \times 26.7}{100}$

$$
=0.40 \mathrm{~cm}^{2}
$$

Provide one bar of 12 mm dia on each side. Transverse reinforcement (see 40.4.3 of the Cude):
Area of two legs of the stirrup should satisfy the following:

$$
A_{\mathrm{su}}=\frac{T_{u} S_{v}}{b_{1} d_{1}\left(0.87 f_{y}\right)}+\frac{V_{\mathrm{u}} S_{\mathrm{v}}}{2.5 d_{1}\left(0.87 f_{y}\right)}
$$

DESIGN AIDS FOR REINFORCED CONCRETE

Assuming diameter of stirrups as 10 mm
$d_{1}=60-(2.5+1.0)-(2.5+0.6)=53.4 \mathrm{~cm}$ $b_{1}=30-2(2.5+1 \cdot 0)=23 \mathrm{~cm}$

$$
\begin{aligned}
& \frac{A_{v}\left(0.87 f_{y}\right)}{S_{v}}=\frac{45 \times 10^{4}}{23 \times 53.4 \times 10^{2}} \\
&+\frac{95 \times 10^{3}}{2.5 \times 53.4 \times 10}=366.4+71.2 \\
&=437.6 \mathrm{~N} / \mathrm{mm} \\
&=4.38 \mathrm{kN} / \mathrm{cm}
\end{aligned}
$$

Area of all the legs of the stirrup should satisfy the condition that $A_{\mathrm{sv}} / S_{\mathrm{v}}$ should not be less than $\frac{\left(\tau_{v e}-\tau_{c}\right) b}{0.87 f_{y}}$
From Table 61, for tensile reinforcement percentage of 0.71 , the value of τ_{c} is 0.53 $\mathrm{N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
\frac{A_{\mathrm{vv}}\left(0.87 f_{y}\right)}{S_{v}} & =\left(\tau_{\mathrm{ve}}-\tau_{c}\right) 6 \\
30 \times 10 & (1.99-0.53) \\
& =438 \mathrm{~N} / \mathrm{mm}=4.38 \mathrm{kN} / \mathrm{cm}
\end{aligned}
$$

Nom-It is only ${ }^{2}$ coincidence that the values of Avo $(0.87 \mathrm{fy}) / \mathrm{Sv}$ calculated by the two equations are the same.

Referring Table 62 (for $f_{y}=415 \mathrm{~N} / \mathrm{mm}$).
Provide 10 mm \& two legged stirrups at 12.5 cm spacing.

According to 25.5.1.7(a) of the Code, the spacing of stirrups shall not exceed x_{1}, $\left(x_{1}+y_{1}\right) / 4$ and 300 mm , where x_{1} and y_{1} are the short and long dimensions of the stirrup.

$$
\begin{aligned}
& x_{1}=30-2(2.5-0.5)=26 \mathrm{~cm} \\
& y_{1}=60-2(2.5-0.5)=56 \mathrm{~cm} \\
& \left(x_{1}+y_{1}\right) / 4=(26+56) / 4=20.5 \mathrm{~cm}
\end{aligned}
$$

10 mm \$ two legged stirrups at 12.5 cm spacing will satisfy all the codal requirements.

$p_{\text {t }}$	$f_{\text {ck }}, \mathrm{N} / \mathrm{mm}^{2}$					
	15	20	25	30	35	40
0.20	0.32	0.33	0.33	0.33	0.34	0.34
$0 \cdot 30$	0.38	$0 \cdot 39$	$0 \cdot 39$	0.40	0.40	0.41
0.40	0.43	0.44	0.45	0.45	0.46	0.46
0.50	0.46	$0 \cdot 48$	$0 \cdot 49$	0.50	0.50	0.51
0.60	0.50	0.51	0.53	0.54	0.54	0.55
0.70	0.53	0.55	0.56	0.57	0.58	0.59
$0 \cdot 80$	0.55	0.57	0.59	0.60	0.61	0.62
0.90	0.57	$0 \cdot 60$	0.62	0.63	0.64	0.65
1.00	0.60	$0 \cdot 62$	$0 \cdot 64$	0.66	0.67	0.68
$1 \cdot 10$	0.62	0.64	0.66	0.68	0.69	0.70
$1 \cdot 20$	0.63	$0 \cdot 66$	0.69	0.70	0.72	0.73
$1 \cdot 30$	0.65	$0 \cdot 68$	0.71	0.72	0.74	0.75
$1 \cdot 40$	0.67	0.70	0.72	0.74	0.76	0.77
$1 \cdot 50$	$0 \cdot 68$	0.72	0.74	0.76	0.78	0.79
1.60	0.69	0.73	0.76	0.78	0.80	0.81
1.70	0.71	0.75	0.77	0.80	0.81	0.83
$1 \cdot 80$	0.71	0.76	0.79	0.81	0.83	0.85
$1 \cdot 90$	0.71	0.77	$0 \cdot 80$	0.83	0.85	0.86
2.00	0.71	0.79	0.82	0.84	0.86	0.88
$2 \cdot 10$	0.71	0.80	0.83	0.86	0.88	0.90
$2 \cdot 20$	0.71	0.81	0.84	0.87	0.89	0.91
$2 \cdot 30$	0.71	0.82	0.86	0.88	0.91	0.93
$2 \cdot 40$	0.71	0.82	0.87	0.90	0.92	0.94
2.50	0.71	0.82	0.88	0.91	0.93	0.95
$2 \cdot 60$	0.71	0.82	0.89	0.92	0.94	0.97
2.70	0.71	0.82	0.90	0.93	0.96	0.98
$2 \cdot 80$	0.71	0.82	0.91	0.94	0.97	0.99
$2 \cdot 90$	0.71	0.82	0.92	0.95	0.98	1.00
$3 \cdot 00$	0.71	0.82	0.92	0.96	0.99	1.01

TABLE 62 SHEAR - VERTICAL STIRRUPS

Values of $V_{u s} / d$ for two legged stirrups, $\mathrm{kN} / \mathrm{cm}$.

TABLE 63 SHEAR - BENT-UP BARS

Values of $V_{u s}$ for singal bar, kN

As in the Original Standard, this Page is Intentionally Left Blank

DEVELOPMENT LENGTH AND ANCHORAGE

As in the Original Standard, this Page is Intentionally Left Blank

5. DEVELOPMENT LENGTH AND ANCHORAGE

5.1 DEVELOPMENT LENGTH OF BARS

The development length L_{d}, is given by

$$
L_{\mathrm{d}}=\frac{\phi \sigma_{\mathrm{s}}}{4 \tau_{\mathrm{bd}}}
$$

where
ϕ is the diameter of the bar, σ_{3} is the stress in the bar, and
$\tau_{b d}$ is the design bond stress given in 25.2.1.1 of the Code.

The value of the development length corresponding to a stress of $0.87 f_{y}$ in the reinforcement, is required for determining the maximum permissible bar diameter for
positive moment reinforcement [see 25.2.3.3(c) of the Code] and for determining the length of lap splices (see 25.2.5.1 of the Code). Values of this development length for different grades of steel and concrete are given in Tables 64 to 66 . The tables contain the development length values for bars in tension as well as compression.

5.2 ANCHORAGE VALUE OF HOOKS AND BENDS

In the case of bars in tension, a standard hook has an anchorage value equivalent to a straight length of 16ϕ and a 90° bend has an anchorage value of 8ϕ. The anchorage values of standard hooks and bends for different bar diameters are given in Table 67.
f_{y}

$\underset{\substack{\text { BAR } \\ \text { DIAMETER, } \\ \text { mm }}}{ }$	Tension Bars				Compression Bars			
	Grade of Concrete				Grade of Concrete			
	M15	M20	M25	M30	M15	M20	M25	M30
6	$32 \cdot 6$	27.2	$23 \cdot 3$	21.8	$26 \cdot 1$	21.8	18.6	$17 \cdot 4$
8	$43 \cdot 5$	36.3	$31 \cdot 1$	29.0	$34 \cdot 8$	29.0	24.9	$23 \cdot 2$
10	$54 \cdot 4$	$45 \cdot 3$	$38 \cdot 8$	$36 \cdot 3$	$43 \cdot 5$	$36 \cdot 3$	$31 \cdot 1$	$29 \cdot 0$
12	65-3	54.4	$46 \cdot 6$	$43 \cdot 5$	52.2	$43 \cdot 5$	$37 \cdot 3$	$34 \cdot 8$
16	87.0	$72 \cdot 5$	$62 \cdot 1$	58.0	69.6	58.0	49.7	$46 \cdot 4$
18	$97 \cdot 9$	81.6	$69 \cdot 9$	$65 \cdot 3$	78.3	$65 \cdot 3$	$55 \cdot 9$	52.2
20	108.8	90.6	$77 \cdot 7$	$72 \cdot 5$	87.0	$72 \cdot 5$	$62 \cdot 1$	58.0
22	114.8	$95 \cdot 7$	82.0	$76 \cdot 6$	91.9	76.6	$65 \cdot 6$	61.2
25	$130 \cdot 5$	108.8	93.2	87.0	104.4	87.0	$74 \cdot 6$	69.6
28	146.2	121.8	$104 \cdot 4$	97.4	116.9	$97 \cdot 4$	$83 \cdot 5$	$78 \cdot 0$
32	$167 \cdot 0$	$139 \cdot 2$	119.3	111.4	133.6	111.4	95.5	89.1
36	187.9	$156 \cdot 6$	$134 \cdot 2$	$125 \cdot 3$	$150 \cdot 3$	$125 \cdot 3$	$107 \cdot 4$	$100 \cdot 2$

Nore - The development lengths given above are for a stress of 0.87 fy in the bar.

TABLE 65 DEVELOPMENT LENGTH FOR FULLY STRESSED DEFORMED BARS

$$
f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}
$$

Tabulated values are in centimetres.

		Tension Bars			Compression Bars			
Bar		Grade of Concrete			Grade of Concrete			
$\begin{aligned} & \text { Diameter, } \\ & \text { mm } \end{aligned}$	M15	M20	M25	M30	M15	M20	M25	M30
6	$33 \cdot 8$	28.2	24.2	22.6	$27 \cdot 1$	22.6	19.3	18.1
8	$45 \cdot 1$	37.6	$32 \cdot 2$	30.1	$36 \cdot 1$	$30 \cdot 1$	$25 \cdot 8$	$24 \cdot 1$
10	56.4	47.0	$40 \cdot 3$	37.6	$45 \cdot 1$	$37 \cdot 6$	32.2	$30 \cdot 1$
12	$67 \cdot 7$	56.4	$48 \cdot 4$	$45 \cdot 1$	$54 \cdot 2$	$45 \cdot 1$	$38 \cdot 7$	$36 \cdot 1$
16	90.3	75.2	$64 \cdot 5$	60.2	$72 \cdot 2$	60.2	51.6	48.1
18	101.5	84.6	$72 \cdot 5$	67.7	81.2	67.7	58.0	$54 \cdot 2$
20	112.8	94.0	80.6	$75 \cdot 2$	90.3	$75 \cdot 2$	$64 \cdot 5$	$60 \cdot 2$
22	124.1	$103 \cdot 4$	$88 \cdot 7$	$82 \cdot 7$	$99 \cdot 3$	$82 \cdot 7$	$70 \cdot 9$	$66 \cdot 2$
25	141.0	117.5	$100 \cdot 7$	94.0	112.8	94.0	$80 \cdot 6$	$75 \cdot 2$
28	158.0	131.6	112.8	$105 \cdot 3$	$126 \cdot 4$	$105 \cdot 3$	$90 \cdot 3$	84'2
32	$180 \cdot 5$	$150 \cdot 4$	128.9	$120 \cdot 3$	$144 \cdot 4$	$120 \cdot 3$	$103 \cdot 2$	$96 \cdot 3$
36	$203 \cdot 1$	$169 \cdot 3$	145.0	$135 \cdot 4$	$162 \cdot 5$	$135 \cdot 4$	$116 \cdot 1$	$108 \cdot 3$

Note-The development lengths given above are for a stress of $0.87 f_{y}$ in the bars.

TABLE 66 DEVELOPMENT LENGTH FOR FULLY STRESSED DEFORMED BARS

$$
f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}
$$

Tabulated values are in centimetres.

Nore - The development leagths given above are for a stress of 0.87 fy in the bar.

TABLE 67 ANCHORAGE VALUE OF HOOKS AND BENDS

Tabulated values are in centimetres.

Bar Diameter, mm	6	8	10	12	16	18	20	22	25	28	32	36
Anchorage Value of hook	9.6	12.8	16.0	19.2	25.6	28.8	32.0	$35 \cdot 2$	40.0	44.8	51.2	57.6
Anchorage Value of 90° bend	4.8	6.4	8.0	9.6	12.8	14.4	16.0	17.6	20.0	22.4	25.6	28.8

STANDARD HOOK

STANDARD 90° BEND

STANDARD HOOK AND BEND

Type of Steel	Min Valye of k
Mild steel	2
Cold worked steel	4

Note 1 - Table is applicable to all grades of reinforcęment bars.
NoTE 2 - Hooks and bends shall conform to the details given above.

WORKING STRESS DESIGN

As in the Original Standard, this Page is Intentionally Left Blank

6. WORKING STRESS DESIGN

6.1 FLEXURAL MEMBERS

Design of flexural members by working stress method is based on the well known assumptions given in 43.3 of the Code. The value of the modular ratio, m is given by

$$
m=\frac{280}{3 \sigma_{\mathrm{cbc}}}=\frac{93.33}{\sigma_{\mathrm{cbc}}}
$$

Therefore, for all values of σ_{cbc} we have $m \sigma_{c b c}=93.33$

Fig. 9 Balanced Section (Working Stress Design)
6.1.1 Balanced Section (see Fig. 9)

Stress in steel $=\sigma_{\mathrm{st}}=m \sigma_{\mathrm{cbc}}\left(\frac{1}{k}-1\right)$
$\left(\frac{1}{k}-1\right)=\frac{\sigma_{\mathrm{st}}}{m \sigma_{\mathrm{cbc}}}=\frac{\sigma_{\mathrm{st}}}{93 \cdot 33}$
$\frac{1}{k}=\frac{\sigma_{\mathrm{st}}}{93 \cdot 33}+1=\frac{\sigma_{\mathrm{st}}+93.33}{93.33}$
$k=\frac{93 \cdot 33}{\sigma_{\mathrm{st}}+93.33}$
The value of k for balanced section depends only on σ_{st}. It is independent of σ_{cbc}. Moment of resistance of a balanced section is given by $M_{\mathrm{bal}}=\frac{b d^{2}}{2} \sigma_{\mathrm{cbc}} k\left(1-\frac{k}{3}\right)$. The values of $M_{\mathrm{ba}} / b d^{2}$ for different values of σ_{cbc} and $\sigma_{\text {st }}$ are given in Table K.

$\sigma_{c b c}$	$\sigma_{s t}, \mathrm{~N} / \mathrm{mm}^{2}$		
$\mathrm{N} / \mathrm{mm}^{2}$	\bigcirc	230	275
5.0	0.87	0.65	0.58
7.0	$1 \cdot 21$	0.91	0.81
8.5	1.47	$1 \cdot 11$	0.99
10.0	$1 \cdot 73$	$1 \cdot 30$	$1 \cdot 16$

Reinforcement percentage p_{t},bal for balanced section is determined by equating the compressive force and tensile force.

$$
\begin{aligned}
& \frac{\sigma_{\mathrm{cbc}} k d b}{2}=\frac{p_{\mathrm{t}, \mathrm{bal}} b d \sigma_{\mathrm{st}}}{100} \\
& p_{\mathrm{t}, \mathrm{bal}}=\frac{50 k \cdot \sigma_{\mathrm{cbc}}}{\sigma_{\mathrm{st}}}
\end{aligned}
$$

The value of $p_{t, \text { bal }}$ for different values of σ_{cbc} and σ_{st} are given in Table L .

TABLE L PERCENTAGE OF TENSILE REINFORCEMENT $p_{t, b a l}$ FOR SINGLY REINFORCED BALANCED SECTION
(Clause 6.1.1)

$\sigma_{c b c}$ $\mathrm{N} / \mathrm{mm}^{\mathrm{s}}$	$\sigma_{3 t} \mathrm{~N} / \mathrm{mm}^{2}$		
	$\overparen{140}$	${ }_{230}$	275
$5 \cdot 0$	0.71	$0 \cdot 31$	0.23
7.0	1.00	0.44	0.32
$8 \cdot 5$	121	0.53	0.39
$10 \cdot 0$	1.43	0.63	$0 \cdot 46$

6.1.2 Under Reinforced Section

The position of the neutral axis is found by equating the moments of the equivalent areas.

$$
\begin{aligned}
b k d \frac{k d}{2} & =\frac{p_{\mathrm{t}} b d}{100} m(d-k d) \\
b d^{2} \frac{k^{2}}{2} & =b d^{2} \frac{p_{1} m}{100}(1-k) \\
k^{2} & =\frac{p_{1} m}{50}(1-k) \\
k^{2} & +\frac{p_{1} m k}{50}-\frac{p_{1} m}{50}=0
\end{aligned}
$$

The positive root of this equation is given by

$$
k=-\frac{p_{\mathrm{t}} m}{100}+\sqrt{\frac{p^{2} m^{2}}{(100)^{2}}+\frac{p_{\mathrm{t}} m}{50}}
$$

This is the general expression for the depth of neutral axis of a singly reinforced section. Moment of resistance of an under-reinforced section is given by

$$
M=b d^{2} \frac{p_{t} \sigma_{s t}}{100}\left(1-\frac{k}{3}\right)
$$

Values of the moment of resistance factor $M / b d^{2}$ have been tabulated against p_{t} in

Fig. 10 Doubly Reinforced Section (Working Stress Design)

Tables 68 to 71. The Tables cover four grades of concrete and five values of $\sigma_{\mathfrak{a}}$.
6.1.3 Doubly Reinforced Section - Doubly reinforced sections are adopted when the bending moment exceeds the moment of resistance of a balanced section.

$$
M=M_{\text {bal }}+M^{\prime}
$$

The additional moment M^{\prime} is resisted by providing compression reinforcement and additional tensile reinforcement. The stress in the compression reinforcement is taken as 1.5 m times the stress in the surrounding concrete.

Taking moment about the centroid of tensile reinforcement,

$$
\begin{aligned}
M^{\prime}= & \frac{p_{\mathrm{c}} b d}{100}(1 \cdot 5 m-1) \sigma_{\mathrm{cbc}} \\
& \times\left(\frac{k d-d^{\prime}}{k d}\right)\left(d-d^{\prime}\right) \\
= & \frac{p_{\mathrm{c}}}{100}(1 \cdot 5 m-1) \sigma_{\mathrm{cbc}} \\
& \times\left(1-\frac{d^{\prime}}{k d}\right)\left(1-\frac{d^{\prime}}{d}\right) b d^{2}
\end{aligned}
$$

Equating the additional tensile force and Iditional compressive force,

$$
\begin{aligned}
b d & \frac{\left(p_{\mathrm{t}}-p_{\mathrm{t}, \mathrm{bal}}\right)}{100} \sigma_{\mathrm{zt}} \\
= & \frac{p_{\mathrm{c}} b d}{100}(1.5 m-1) \sigma_{\mathrm{cbc}}\left(1-\frac{d^{\prime}}{k d^{\prime}}\right) \\
& \text { or }\left(p_{\mathrm{t}}-p_{\mathrm{t}}, \mathrm{bal}\right) \sigma_{\mathrm{at}} \\
= & p_{\mathrm{c}}(1.5 m-1) \sigma_{\mathrm{cbc}}\left(1-\frac{d^{\prime}}{k d}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad M= & M_{b a l}+\frac{\left(p_{1}-p_{\mathrm{t} \cdot \mathrm{bal}}\right)}{100} \sigma_{\mathrm{st}} \\
& \times\left(1-\frac{d^{\prime}}{d}\right) b d^{2}
\end{aligned}
$$

Total tensile reinforcement $A_{z t}$ is given by

$$
A_{\mathrm{st}}=A_{\mathrm{st} 1}+A_{\mathrm{st}_{2}}
$$

where $A_{t s_{1}}=p_{t, \text { bal }} \frac{b d}{100}$
and $A_{3 t_{2}}=\frac{M^{\prime}}{\sigma_{31}\left(d-d^{\prime}\right)}$
The compression reinforcement can be expressed as a ratio of the additional tensile reinforcement area $A_{\text {st } 2}$.

$$
\begin{aligned}
\frac{A_{\mathrm{cc}}}{A_{\mathrm{atz}}} & =\frac{p_{\mathrm{c}}}{\left(p_{\mathrm{t}}-p_{\mathrm{t}, \mathrm{bal}}\right)} \\
& =\frac{\sigma_{\mathrm{t}}}{\sigma_{\mathrm{cbc}}} \frac{1}{(1 \cdot 5 m-1)\left(1-d^{\prime} / k d\right)}
\end{aligned}
$$

Values of this ratio have been tabulated for different values of d^{\prime} / d and σ_{cbc} in Table M. The table includes two values of σ_{st}. The values of p_{t} and p_{c} for four values of d^{\prime} / d have been tabulated against $M / b d^{2}$ in Tables 72 to 79. Tables are given for four grades of concrete and two grades of steel.

TABLE M VALUES OF THE RATIO $A_{s c} / A_{s 1_{2}}$ (Clause 6.1.3)

$\begin{aligned} & \mathbf{a}_{\mathrm{si}} \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	σ_{cbc} $\mathrm{N} / \mathrm{mm}^{3}$	d^{\prime} / d			
		$\stackrel{0.05}{ }$	$0 \cdot 10$	0.15	$0 \cdot 20$
140	[5.0	$1 \cdot 19$	$1 \cdot 38$	1.66	2.07
	$\left\{\begin{array}{l}7.0\end{array}\right.$	$1 \cdot 20$	1.40	1.68	2.11
	88.5	1.22	1.42	$1 \cdot 70$	$2 \cdot 13$
	L10.0	1.23	1.44	1.72	$2 \cdot 15$
230	$\int 5.0$	2.06	2.61	$3 \cdot 55$	$5 \cdot 54$
	f $7 \cdot 0$	2.09	2.65	3.60	5.63
	88.5	$2 \cdot 12$	2.68	3.64	5.69
	10.0	2.14	2.71	$3 \cdot 68$	5.76

6.2 COMPRESSION MEMBERS

Charts 86 and 87 are given for determining the permissible axial load on a pedestal or short column reinforced with longitudinal bars and lateral ties. Charts are given for two values of $\sigma_{s c}$. These charts have been made in accordance with 45.1 of the Code.

According to 46.3 of the Code, members subject to combined axial load and bending designed by methods based on elastic theory should be further checked for their strength under ultimate load conditions. Therefore it would be advisable to design such members directly by the limit state method. Hence, no design aids are given for designing such members by elastic theory.

6.3 SHEAR AND TORSION

The method of design for shear and torsion by working stress method are similar to the limit state method. The values of permissible shear stress in concrete are given in Table 80.

Tables 81 and 82 are given for design of shear reinforcement.

6.4 DEVELOPMENT LENGTH AND ANCHORAGE

The method of calculating development length is the same as given under limit state design. The difference is only in the values of bond stresses. Development lengths for plain bars and two grades of deformed bars are given in Tables 83 to 85.

Anchorage value of standard hooks and bends as given in Table 67 are applicable to working stress method also.

As in the Original Standard, this Page is Intentionally Left Blank

Chart 86 AXIAL COMPRESSION (Working Stress Design)

Chart 87 AXIAL COMPRESSION (Working Stress Design)

$\sigma_{s t}$

TABLE 69 FLEXURE - MOMENT OF RESISTANCE FACTOR, $M / b d^{2}, \mathrm{~N} / \mathrm{mm}^{2}$ FOR SINGLY REINFORCED SECTIONS

	$\sigma_{\mathrm{st}}, \mathrm{N} / \mathrm{mm}^{2}$						$\sigma_{3 t}, \mathrm{~N} / \mathrm{mm}^{2}$				
$\mathrm{P}_{\mathbf{t}}$	130	140	190	230	275	$\mathrm{P}_{\mathbf{t}}$	130	140	190	230	275
$0 \cdot 20$	0-244	0.262	0.356	0.431	0.515	0.96	1.096	1180			
$0 \cdot 22$	$0 \cdot 267$	0.288	0.391	0.473	0.565	0.97	1.107	1.192			
0.24	0.291	0.313	0.425	0.514	0.615	0.98	$1 \cdot 117$	1.203			
0.26	0.314	0.338	0-459	0.556	0.664	0.99	$1 \cdot 128$	1.215			
0.28	0.337	0-363	0.493	0.597	0.714	1.00	1.139	1.227			
0.30	0.361	0.388	0.527	0.638	0.763	1.01	$1 \cdot 150$	1.238			
$0 \cdot 32$	$0 \cdot 394$	$0 \cdot 413$	$0 \cdot 561$	0.679	0.812	1.02	1.161	1.250			
$0 \cdot 34$	$0 \cdot 407$	$0 \cdot 438$	0.595	0.720	0.861	1.03	$1 \cdot 171$	$1 \cdot 261$			
0.36	$0 \cdot 430$	$0 \cdot 463$	0.628	0.761	0.909	1.04	$1 \cdot 182$	1.273			
0.38	0.453	$0 \cdot 488$	0.662	0.801	0.958	1.05	$1 \cdot 193$	1.285			
0.40	0.476	0.512	0.695	0.842		1.06	1.203	1.296			
0.42	0.498	0.537	0.729	0.882		1.07	1.214	1.308			
0.44	$0 \cdot 521$	0.561	0.762	$0 \cdot 922$		1.08	1.225	$1 \cdot 319$			
$0 \cdot 46$	0.544	0.586	0.795	0.962		1.09	1.236	$1 \cdot 331$			
0.48	0.567	0.610	0.828	1.002		$1 \cdot 10$	1.246	$1 \cdot 342$			
0.50	0.589	0.634	0.861	1.042		$1 \cdot 11$	1.257	1.354			
0.52	$0 \cdot 612$	0.659	0.894	1.082		$1 \cdot 12$	1.268	1.365			
0.54	0.634	0.683	0.927			$1 \cdot 13$	1.278	$1 \cdot 377$			
0.56	$0 \cdot 657$	$0 \cdot 707$	0.960			$1 \cdot 14$	1.289	$1 \cdot 388$			
0.58	0.679	0.731	0.992			$1 \cdot 15$	1-300	$1 \cdot 400$			
0.60	0.701	0.755	1.025			$1 \cdot 16$	1.310	1.411			
0.62	0.723	0.779	1.057			$1 \cdot 17$	1.321	1.423			
0.64	0.746	0-803	1.090			1-18	1.332	1.434			
0.66	0.768	0.827	1-122			$1 \cdot 19$	$1 \cdot 342$	1.446			
0.68	0.790	0.851	1.155			1.20	1.353	1.457			
0.70	0.812	0.875	$1 \cdot 187$			1.21	1.364	1.468			
0.72	0.834	$0 \cdot 898$	$1 \cdot 219$			1.22	1.374 1.385				
0.74	0.856	0.922				1.23	1.385				
0.76	0.878	0.946				1.24	1.395				
0.78	0.900	0.969				1.25	1.406				
0.80	0.922	0.993				1.26	1.417				
0.82	0.944	1.016				1.27	$1 \cdot 427$				
0.83	0.955	1.028				- 1.28	1.438				
0.84	0.966	1.040				1.29	1.448				
0.85	0.977	1.052				1.30	1.459				
0.86	0.987	1.063				1.31	1.469				
0.87	0.998	1.075				1.32	1.480				
0.88	1.009	1.087				1.33	1.491				
0.89	1.020	1.099				1.34	1.501				
0.90	1.031	$1 \cdot 110$				1.35	1.512				
0.91	1.042	$1 \cdot 122$				1.36	1.522				
0.92	1.053	$1 \cdot 134$				1.37	1.533				
0.93	1.063	$1 \cdot 145$									
0.94	1.074	$1 \cdot 157$									
0.95	1.085	$1 \cdot 169$									

$\sigma_{\text {cbc }}$
8.5
σ_{S}

$P^{\text {a }}$ ($\sigma_{z t}, \dot{\mathrm{~N}} / \mathrm{mm}^{2}$						P_{t}	$\sigma_{\text {st }}, \mathrm{N} / \mathrm{mm}^{2}$				
P_{t}	130	140	$\underbrace{}_{190}$	230	275		130	140	190	230	275
0.20	0.245	0.264	0.358	0.433	0.518	$1 \cdot 10$	1.257	1.354			
0.22	0.269	0.289	0.392	0.475	0.568	$1 \cdot 12$	1.279	$1 \cdot 377$			
0.24	0.292	0.315	0.427	0.517	0.618	$1 \cdot 14$	1.301	1.401			
0.26	0.316	0.340	$0 \cdot 461$	0.559	0.668	$1 \cdot 16$	$1 \cdot 322$	1.424			
0.28	0.339	0.365	0.496	0.600	0.718	$1 \cdot 18$	$1 \cdot 344$	1.447			
$0 \cdot 30$	0.363	0.391	0.530	0.642	0.767	$1 \cdot 20$	$1 \cdot 365$	$1 \cdot 470$			
$0 \cdot 32$	0.386	0.416	0.564	0.683	0.817	$1 \cdot 22$	$1 \cdot 387$	1.494			
0.34	0.409	0.441	0.598	0.724	0.866	1.24	1.408	1.517			
$0 \cdot 36$	$0 \cdot 432$	0.466	0.632	0.765	0.915	1.26	$1 \cdot 430$	1.540			
0.38	0.456	0.491	0.666	0.806	0.964	$1 \cdot 28$	$1 \cdot 451$	1.563			
0.40	0.479	0.515	0.700	0.847	1.013	$1 \cdot 30$	1.473	1.586			
0.42	0.502	0.540	0.733	0.888	1.061	$1 \cdot 31$	1.483	1.597			
0.44	0.525	0.565	0.767	0.928	$1 \cdot 110$	$1 \cdot 32$	1.494	1.609			
0.46	0.548	0.590	0.800	0.969	$1 \cdot 158$	$1 \cdot 33$	$1 \cdot 505$	1.620			
$0 \cdot 48$	0.570	0.614	0.834	1.009		$1 \cdot 34$	1.515	1.632			
0.50	0.593	0.639	0.867	1.049		$1 \cdot 35$	1.526	1.643			
0.52	0.616	0.663	0.900	1.090		$1 \cdot 36$	1.537	1.655			
0.54	0.639	0.688	0.933	1.130		$1 \cdot 37$	1.547	1.666			
0.56	0.661	0.712	0.966	$1 \cdot 170$		$1 \cdot 38$	$1 \cdot 558$	1.678			
0.58	0.684	0.736	0.999	$1 \cdot 210$		$1 \cdot 39$	$1 \cdot 569$	1.689			
$0 \cdot 60$	0.706	0.761	1.032	1-250		1.40	$1 \cdot 579$	1.701			
0.62	0.729	0.785	1.065	1.289		1.41	1.590	1.712			
0.64	0.751	0.809	1.098			$1 \cdot 42$	1.600	1.724			
0.66	0.774	0.833	1.131			$1 \cdot 43$	1.611				
0.68	0.796	0857	1.163			$1 \cdot 44$	1.622				
0.70	0.818	0.881	$1 \cdot 196$			1.45	1.632				
0.72	0.841	0.905	1.229			1.46	1.643				
0.74	0.863	0.929	1.261			1.47	1.653				
0.76	0.885	0.953	1.294			1.48	1.664				
0.78	0.907	0.977	$1 \cdot 326$			1.49	1.675				
0.80	0.929	1.001	$1 \cdot 358$			1.50	1.685				
0.82	0.952	1.025	1.391			1.51	1.696				
0.84	0.974	1.048	1.423			1.52	1.706				
0.86	0.996	1.072	$1 \cdot 455$			1.53	1.717				
0.88	1.018	1.096				1.54	$1 \cdot 727$				
0.90	1.040	1-120				1.55	1.738				
0.92	1.062	1.143				1.56	1.749				
0.94	1.083	$1 \cdot 167$				1.57	1.759				
0.96	1-105	1.190				1.58	1.770				
0.98	1-127	$1 \cdot 214$				1.59	1.780				
1.00	1-149	1.237				1.60	1-791				
1.02	$1 \cdot 171$	$1 \cdot 261$									
1.04	$1 \cdot 192$	$1 \cdot 284$									
1.06	1.214	1-308									
1.08	1.236	$1 \cdot 331$									

TABLE 72 FLEXURE - REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

$\sigma_{s t}$

TABLE 73 FLEXURE - REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

$\begin{aligned} & M_{\mathrm{u}} / b d^{2} \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	$d^{\prime} / d=0.05$		$d^{\prime} / d=0 \cdot 10$		$d^{\prime} / d=0.15$		$\begin{aligned} \sigma_{\mathrm{cbc}} & =7.0 \mathrm{~N} / \mathrm{mm}^{2} \\ \sigma_{\mathrm{st}} & =140 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$			
			d^{\prime} / d							
	P_{t}	$P_{\text {c }}$			P_{t}	P_{c}	${ }^{P_{t}}$	$P_{\text {c }}$	P_{6}	$P_{\text {c }}$
1.22	1.005	0.006	1.005	0.007	1.006	0.009	1.006	0.013		
$1 \cdot 25$	1.028	0.033	1.029	0.041	1.031	0.052	1.033	0.069		
$1 \cdot 30$	1.065	0.078	1.069	0.097	1.073	$0 \cdot 123$	1.077	0.163		
1.35	1.103	0.124	$1 \cdot 108$	$0 \cdot 152$	$1 \cdot 157$	0.193	$1 \cdot 122$	0.257		
$1 \cdot 40$	1.140	$0 \cdot 169$	$1 \cdot 148$	0.208	1.157	0.264	$1 \cdot 167$	0.351		
1.45	$1 \cdot 178$	0.214	$1 \cdot 188$	0.264	1199	0.335	1.211	0.445		
1.50	1.216	0.259	1.228	0.319	1.241	0.406	1.255	0.539		
1.55	1.253	0.305	1.267	0.375	1.283	0.476	1.301	$0 \cdot 633$		
$1 \cdot 60$	1.291	0.350	+1307	0.431	1.325	0.547	1.345	0.727		
1.65	$1 \cdot 328$	0.395	$1 \cdot 347$	0.486	1.367	0.618	1.390	0.821		
1.70	1.366	0.440	1.386	0.542	1.409	0.689	1.435	0.915		
1.75	1.404	0.485	1.426	0.598	1.451	0.760	1.479	1.009		
1.80	1.441	0.531	1.466	0.653	1.493	0.830	1.524	$1 \cdot 103$		
1.85	1.479	0.576	1.505	0.709	1.535	0.901	1.568	1.197		
1.90	1.516	0.621	1.545	0.765	1.577	0.972	1.613	1-291		
1.95	1.554	0.666	1.585	0.821	1.619	1.043	1.658	1.385		
2.00	1.591	0.712	1.624	0.876	1.661	1.113	1.702	1.479		
2.05	1.629	0.757	1.664	0.932	1.703	1.184	1.747	1.573		
$2 \cdot 10$	1.667	0.802	1.704	0.988	1.745	1.255	1.792	1.667		
$2 \cdot 15$	1.704	0.847	1.743	1.043	1.787	1.326	1.836	1.761		
$2 \cdot 20$	1.742	$0 \cdot 892$	1.783	1.099	1.829	1.396	1.881	1.855		
2.25	1.779	0.938	1.823	1.155	1.871	1.467	1.926	1.949		
2.30	1.817	0.983	1.862	1.210	1.913	1.538	1.970	$2 \cdot 043$		
2.35	1.855	1.028	1.902	1.266	1.955	1.609	2.015	$2 \cdot 137$		
$2 \cdot 40$	1.892	1.073	1.942	$1 \cdot 322$	1.997	1.680	$2 \cdot 060$	2.231		
2.45	1.930	1.119	1.981	1.378	2.039	1.750	$2 \cdot 104$	$2 \cdot 325$		
2.50	1.967	1.164	2.021	1.433	2.081	1.821	$2 \cdot 149$	2.419		
2.55	2.005	1.209	2.061	1.489	2.123	1.892	$2 \cdot 193$	2.513		
$2 \cdot 60$	2.043	1.254	$2 \cdot 101$	1.545	2.165	1.963	$2 \cdot 238$	$2 \cdot 607$		
$2 \cdot 65$	2.080	1.299	2.140	1.600	2.207	2.033	$2 \cdot 283$	2.701		
2.70	2.118	1.345	$2 \cdot 180$	1.656	2.249	2.104	$2 \cdot 327$	2.795		
2.75	2.155	1.390	$2 \cdot 220$	1.712	2.291	$2 \cdot 175$	2.372	2.888		
$2 \cdot 80$	$2 \cdot 193$	1.435	2.259	1.767	2.333	2.246	2.417	$2 \cdot 982$		
$2 \cdot 85$	2.231	1.480	2.299	1.823	2.375	2.316	2.461	3.076		
$2 \cdot 90$	2.268	1.526	2.339	1.879	$2 \cdot 417$	$2 \cdot 387$	$2 \cdot 506$	$3 \cdot 170$		
2.95	$2 \cdot 306$	1.571	$2 \cdot 378$	1.934	2.459	2.458	2.551	3.264		
3.00	$2 \cdot 343$	1.616	2.418	1.990	2.501	2.529	2.595	3.358		
3.05	2.381	1.661	2.458	2.046	2.543	2.599	2.640	3.452		
$3 \cdot 10$	2.419	1.707	2.497	$2 \cdot 102$	2.585	2.670	2.685	3.546		
$3 \cdot 15$	2.456	1.752	2.537	2.157	$2 \cdot 627$	2.741	2.729	3.640		
3.20	2.494	1.797	2.577	2.213	2.669	2.812	2.774	3.734		
$3 \cdot 25$	2.531	1.842	2.616	2.269	2.711	2.883	2.818	3.828		
3.30 3	2.569	1.887	2.656	$2 \cdot 324$	2.754	2.953	2.863	3.922		
$3 \cdot 35$	2.607	1.933	2.696	$2 \cdot 380$	2.796	3.024	2.908	4.016		
$3 \cdot 40$	2.644	1.978	$2 \cdot 735$	2.436	2.838	3.095	$2 \cdot 952$	$4 \cdot 110$		

TABLE 74 FLEXURE-REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

							$\begin{gathered} \sigma_{d \mathrm{ct}}= \\ \sigma_{\mathrm{tt}}-1 \\ d^{\prime} / \mathrm{d} \end{gathered}$	$\begin{aligned} & N / \mathrm{mm}^{1} \\ & 5 / \mathrm{mm}^{1} \\ & 20 \end{aligned}$
$\begin{aligned} & M / \mathrm{bd} \mathrm{~d}^{2} \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	P_{1}	P_{t}	F_{1}	$P_{\text {c }}$	P_{1}	P_{5}	P_{1}	P_{c}
148			$1 \cdot 220$	0-008	1220	0010	1.220	0-013
1.50	1.234	$0 \cdot 024$	$1-235$	$0 \cdot 030$	1237	0038	$1 \cdot 238$	$0-051$
1. 56	1272	000	$1 \cdot 275$	$0 \cdot 086$	1-279	$0 \cdot 110$	1-283	$0-146$
1.60	1-310	0.116	1-315	0.143	1-321	$0-181$	1.327	$0 \cdot 241$
1.65	1/347	0.162	1.354	0-199	1-363	0.253	1/372	0.316
1-70	14385	0-207	1.394	$0 \cdot 255$	1/405	0.324	1.417	0.431
1.75	1.422	0.253	1434	0.312	1467	0.396	1.461	$0 \cdot 586$
1.09	1460	0-299	1474	0-368	1489	$0 \cdot 468$	1.505	$0 \cdot 621$
1.65	$1 \cdot 497$	0-345	1.513		1.531	0-539	1.551	0716
1-90	1.535	$0-380$	1.553	$0-481$	1-573	0.611	1-595	0.811
1.95	1.573	0.436	1.593	$0-537$	1.615	0682	1640	0.906
200	1.610	0.482	1.632	0.593	1.657	$0 \cdot 754$	1.685	1.001
2.05	1.648	0.528	1.672	0.650	1.699	0885	1.729	1.096
2-10	1-685	0.573	1.712	0706	$1 \cdot 741$	0.597	1.774	1.191
$2 \cdot 15$	1-723	0.619	1.751	0762	1.783	0909	1818	$1 \cdot 286$
2.20	1761	0.665	1.791	0.819	1.825	1-040	1-863	1.382
$2 \cdot 25$	1.798	0.711	1.831	$0 \cdot 875$	1.867	$1-112$	$1-908$	1.477
2-30	1-836	0.756	1870	0-931	1.969	1.183	1.952	1.572
2.35	1.873	$0 \cdot 802$	1910	0-988	1-951	1.255	1.997	1.667
$2 \cdot 40$	1-911	0.848	$1-950$	1.044				
		$0 \cdot 893$	$1-889$	1100	2035	1-398	2.086	1.857
$2 \cdot 50$	1-986	0.939	2029	1.157	2077	1470	$2 \cdot 131$	1.952
2.55	2.024	0996	2009	1-213	2.119	1.541	$2 \cdot 176$	2-047
$2-95$	2061	1.031	2-108	1.269	2-161	1.613	2.220	$2 \cdot 142$
2.65	2.099	1.076	$2 \cdot 148$	$1 \cdot 326$	2-203	1.684	$2 \cdot 263$	2-237
2.70	$2 \cdot 137$	$1 \cdot 122$	$2 \cdot 188$	$1 \cdot 392$	2245	1.756	$2 \cdot 310$	$2 \cdot 332$
2.75	$2 \cdot 174$	1-168	2.228	1.438	2287	1.827	$2 \cdot 354$	2.427
2.81	$2 \cdot 212$	1-214	$2 \cdot 267$	1.495	2.329	1.899	$2 \cdot 399$	2582
2.85	2.249	1259	2.307	$1 \cdot 551$	2.371	$1 \cdot 971$	2.443	$2 \cdot 617$
$2 \cdot 90$	$2 \cdot 287$	1-305	$2 \cdot 347$	1.607	2.413	2.042	2488	2.712
2.95	2.325	1-351	2.386	1.664	2.455	2.114	2.533	$2 \cdot 807$
3-00	$2 \cdot 362$	1-397	2.426	1.720	2.497	2.185	2577	2.900
3-05	2.400	1-442	$2 \cdot 466$	1.776	2.539	2.257	2.627	2-997
3-10	2.437	1488	2.505	1833	2.581	23329	2.667	$3-093$
315	2.475	1.534	$2 \cdot 545$	1-859	$2 \cdot 623$	2-400	2771	$3 \cdot 188$
	$2 \cdot 513$	1.580	2.585	1-945	2.665	2.472	2756	3283
325	2.550	1.625	2.624	2000	2.707	2.543	$2-801$	3.378
3.30	2.588	1.671	2.664	2058	2.749	$2 \cdot 615$	2845	3473
9.35	2.625	1.717	2.704	$2 \cdot 114$	2.791	2-656	2890	3.568
340	2-663	1.763	2.743	$2 \cdot 171$	$2 \cdot 833$	$2 \cdot 758$	2935	J 663
345	2701	1-808	2.783	2227	$2 \cdot 875$	2-830	2979	3758
3.50	2738	1-854	2.823	2283	2.917	2.901	3024	$3 \cdot 853$
3.55	2.776	1.900	2.862	$2 \cdot 340$	2.959	2.973	3068	3.948
$3 \cdot 60$	2-813	1-946	2902	$2 \cdot 396$	3.001	3-014	$3 \cdot 113$	4043
365	2-851	1-991	2-942	2452	3.043	$3 \cdot 116$	$3 \cdot 158$	4.138

TABLE 75 FLEXURE-REINFORCEMENT PERCENTAGES FOR DOUBLY
REINFORCED SECTIONS

M/bde $\mathrm{N} / \mathrm{mm}^{3}$	$d^{\prime} / 4=0.05$		$d^{\prime} / d=0 \cdot 10$		$d^{\prime} / 4=0.15$		${ }^{0}$ cher $=100 \mathrm{~N} / \mathrm{mm}^{4}$			
			$d^{\prime} / 4=0 \cdot 20$							
	P_{k}	Pe			Pt	Pb	P_{2}	Pr	Pr_{r}	Pb_{6}
174	1434	0.006	14.44	0-008	1434	0010	1.435	0.013		
175	1.441	$0-015$	1462	0-019	1443	0.024	1.443	0.032		
1-80	1.479	0062	$1-481$	0.076	$1 \cdot 485$	0097	$1 \cdot 488$	0.128		
1.25	1.516	0.108	1-521	0.133	1.527	0.160	1.533	0224		
1-90	1.554	(-154	1-561	0-190	1.569	0241	1577	$0 \cdot 321$		
195	1-591	0.201	1-601	0.247	1.611	0.314	1.622	0417		
200	1.629	0247	1.640	0.304	1.653	0386	1.667	0.513		
$2 \cdot 05$	1-667	0.293	$1 \cdot 650$	0.361	1.695	0.459	1.711	$0 \cdot 609$		
$2 \cdot 10$	1-704	0-339	1.720	$0 \cdot 418$	$1 \cdot 737$	0.531	1.736	0.705		
$2 \cdot 15$	1-742	0-386	1.759	0-475	1.779	0.603	1-801	O-801		
2-20	1.779	$0-432$	1.799	0.532	1.521	0.676	$1 \cdot 845$	$0-897$		
225	1.817	0478	1.839	0588	1.663	0748	1.890	0794		
2-30	1.855	0.524	1.878	$0 \cdot 646$	1-503	08821	1-935	1.00		
$2 \cdot 35$	1/892	0571	1-918	0.703	1'947	0883	1.979	1185		
2-40	1.930	0.617	$1-958$	0.760	1-989	0965	2.024	1282		
2-45	1.967	0.663	$1-997$	08817	2.031	1038				
2-50	2.005	0709	2.037	$0-874$	2.073	1.110	$\begin{aligned} & 2 \cdot 113 \end{aligned}$	$1,474$		
2.55	2.043 2.040	0.756 0.202	2.077	0.931	2.115	1.183 1.255 1	2.158 2.202	1.571 1.667		
$2 \cdot 65$	2.118	${ }_{0}^{0848}$	$2 \cdot 116$ $2 \cdot 156$	0.988 1.045	+2.199	1-327	2.247	1.763 1.767		
2.70	2.155	0895	$2 \cdot 196$	1.102	2.241	1-400	2.292	1-859		
2.75	2.193	0941	2.235	1.159	$2 \cdot 283$	1472	$2 \cdot 336$	1-955		
2-80	2.231	0.097	2.275	1.216	2.335	1.645	2.381	2.051		
2-85	2.268	1.033	2.315	1.273	$2 \cdot 367$	1.617	$2 \cdot 426$	$2 \cdot 147$		
290	$2 \cdot 306$	1.090	2.354	1.330	2409	1689	$2 \cdot 470$	2-244		
295	$2 \cdot 343$	1.125	$2 \cdot 394$	1.387	2451	1762	2.515	$2 \cdot 340$		
$3 \cdot 00$	$2 \cdot 381$	1.172	2.434	1.444	-2.493	1.834	$2 \cdot 560$	2.416		
$3 \cdot 05$	2.419	1-218	2.474	1-500	2.535	1-906	$2 \cdot 604$	2.532		
3-10	2.436	1.265	2-513	1.557	2.577	1.979	$2 \cdot 649$	2.624		
$3 \cdot 15$	2.494	1.311	2-553	1.614	2.619	2.051	$2 \cdot 693$	2.724		
3-20	2.531	1.357	$2 \cdot 593$	1.671	2661	2.124	2.738	2-821		
325	2.569	1.404	2-632	$1 \cdot 728$	$2 \cdot 703$	$2 \cdot 196$	$2 \cdot 783$	2917		
3-30	$2 \cdot 607$	1450	2.672	1.785	2745	2.268	28827	1013		
3-35	$2 \cdot 644$	1.496	2.712	1.842	$2 \cdot 787$	2.341	2.872	$3 \cdot 109$		
3-40	2.682	1.542	2-751	1.899	2.629	2413	2.917	$3 \cdot 205$		
3.45	2.719	1-589								
3.50	2.757	1.635	2.831	2.013	2.913	2558	3.006	$\frac{3}{3}-197$		
3.55 $3 \cdot 60$	$\begin{aligned} & 2.794 \\ & 2.832 \end{aligned}$	1-681	2.870 2.910	$2 \cdot 070$ $2 \cdot 127$	$\begin{aligned} & 2.955 \\ & 2.997 \end{aligned}$	2630	$\begin{aligned} & 3.051 \\ & 0.095 \end{aligned}$	3.494		
$3 \cdot 60$ $3 \cdot 65$	$\begin{aligned} & \frac{2.312}{2870} \\ & \hline \end{aligned}$	1.727 1.774	2.910 2.950	2.127 2.184	$\frac{2.997}{3.019}$	2.703 2.775	$\begin{aligned} & 3.095 \\ & 2.146 \end{aligned}$	3.590 3.686		
$3 \cdot 65$	2870	1774	2.950	2.184	3.039	2.775	$3 \cdot 140$	3.686		
3.70	2-907	1-820	2-989	2.241	3-681	2.848	$3 \cdot 185$	$3 \cdot 782$		
3.75	2945	1-866	3.029	2.298	3-123	2.920	$3 \cdot 229$	3.878		
$3 \cdot 80$	2-982	1.912	$3 \cdot 969$	2.355	3.165	2992	3:274	3.974		
$3 \cdot 85$	3.020	$1-959$	3•108	2.412	3.207	3.065				
$3 \cdot 90$	3.058	2005	$3 \cdot 148$	2-469	3-249	3.137				

TABLE 76 FLEXURE - REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

$M / b d^{2}$, N / mm		0-05	d'la		$d^{\prime} / d=$		$\begin{aligned} & \sigma_{\mathrm{ebe}}=5.0 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{\mathrm{nt}}=230 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	
							d^{\prime} / ld	0.20
	P_{t}	P_{6}	$P_{\text {P }}$	$P_{\text {c }}$	$\boldsymbol{P}_{\boldsymbol{t}}$	P_{6}	$P_{\text {f }}$	P_{6}
$\begin{aligned} & 0.66 \\ & 0.70 \\ & 0.75 \\ & 0.80 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.317 \\ & 0.336 \\ & 0.359 \\ & 0.381 \\ & 0-404 \end{aligned}$	$\begin{aligned} & 0-007 \\ & 0-045 \\ & 0-092 \\ & 0.139 \\ & 0 \cdot 187 \end{aligned}$	$\begin{aligned} & 0.318 \\ & 0.337 \\ & 0.361 \\ & 0.385 \\ & 0.409 \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.060 \\ & 0.123 \\ & 0.186 \\ & 0.249 \end{aligned}$	$\begin{aligned} & 0.318 \\ & 0.338 \\ & 0.364 \\ & 0.389 \\ & 0.415 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.087 \\ & 0.177 \\ & 0.268 \\ & 0.359 \end{aligned}$	$\begin{aligned} & 0.318 \\ & 0.340 \\ & 0.367 \\ & 0.394 \\ & 0.421 \end{aligned}$	$\begin{aligned} & 0.023 \\ & 0.144 \\ & 0.295 \\ & 0.446 \\ & 0.596 \end{aligned}$
$\begin{aligned} & 090 \\ & 0.95 \\ & 1.00 \\ & 1.05 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 0.427 \\ & 0.450 \\ & 0.473 \\ & 0.496 \\ & 0.519 \end{aligned}$	$\begin{aligned} & 0.234 \\ & 0.281 \\ & 0.328 \\ & 0.375 \\ & 0.422 \end{aligned}$	$\begin{aligned} & 0-433 \\ & 0-458 \\ & 0-482 \\ & 0-506 \\ & 0-530 \end{aligned}$	$\begin{aligned} & 0.312 \\ & 0.375 \\ & 0.438 \\ & 0-501 \\ & 0.564 \end{aligned}$	$\begin{aligned} & 0-441 \\ & 0-466 \\ & 0-492 \\ & 0-517 \\ & 0-543 \end{aligned}$	$\begin{aligned} & 0-450 \\ & 0.540 \\ & 0.631 \\ & 0.722 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 0.448 \\ & 0.476 \\ & 0.503 \\ & 0.530 \\ & 0.557 \end{aligned}$	$\begin{aligned} & 0.747 \\ & 0.898 \\ & 1-048 \\ & 1.199 \\ & 1.350 \end{aligned}$
$\begin{aligned} & 1.15 \\ & 1.20 \\ & 1.25 \\ & 1.30 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 0.542 \\ & 0.564 \\ & 0.587 \\ & 0.610 \\ & 0.633 \end{aligned}$	$\begin{aligned} & 0.469 \\ & 0.517 \\ & 0.564 \\ & 0.611 \\ & 0.658 \end{aligned}$	$\begin{aligned} & 0.554 \\ & 0.578 \\ & 0.603 \\ & 0.627 \\ & 0.651 \end{aligned}$	$\begin{aligned} & 0.627 \\ & 0.690 \\ & 0.753 \\ & 0.816 \\ & 0.879 \end{aligned}$	$\begin{aligned} & 0.568 \\ & 0.594 \\ & 0.620 \\ & 0.645 \\ & 0.671 \end{aligned}$	$\begin{aligned} & 0-903 \\ & 0-994 \\ & 1-785 \\ & 1-175 \\ & 1-266 \end{aligned}$	$\begin{aligned} & 0-584 \\ & 0.611 \\ & 0-639 \\ & 0-666 \\ & 0.693 \end{aligned}$	$\begin{aligned} & 1 \cdot 501 \\ & 1.651 \\ & 1.802 \\ & 1.953 \\ & 2.104 \end{aligned}$
$\begin{aligned} & 1-40 \\ & 1-45 \\ & 1-50 \\ & 1-55 \\ & 1-60 \end{aligned}$	$\begin{aligned} & 0-656 \\ & 0.679 \\ & 0-702 \\ & 0.725 \\ & 0.748 \end{aligned}$	$\begin{aligned} & 0-705 \\ & 0-752 \\ & 0-800 \\ & 0.847 \\ & 0.894 \end{aligned}$	$\begin{aligned} & 0.675 \\ & 0.699 \\ & 0.723 \\ & 0.747 \\ & 0.772 \end{aligned}$	$\begin{aligned} & 0.942 \\ & 1.005 \\ & 1.068 \\ & 1+131 \\ & 1.194 \end{aligned}$	$\begin{aligned} & 0-696 \\ & 0.722 \\ & 0.747 \\ & 0.773 \\ & 0.799 \end{aligned}$	$\begin{aligned} & 1.357 \\ & 1.457 \\ & 1.538 \\ & 1.629 \\ & 1.719 \end{aligned}$	$\begin{aligned} & 0.720 \\ & 0.747 \\ & 0.775 \\ & 0.802 \\ & 0.829 \end{aligned}$	$\begin{aligned} & 2.254 \\ & 2.405 \\ & 2-556 \\ & 2.707 \\ & 2.857 \end{aligned}$
$\begin{aligned} & 1.65 \\ & 1+70 \\ & 1.75 \\ & 1.80 \\ & 1.85 \end{aligned}$	0.770 0.793 0.816 0-839 0.862	$\begin{aligned} & 0-941 \\ & 0.988 \\ & 1.035 \\ & 1.082 \\ & 1-130 \end{aligned}$	$\begin{aligned} & 0-796 \\ & 0-820 \\ & 0-844 \\ & 0-868 \\ & 0-892 \end{aligned}$	$\begin{aligned} & 1.257 \\ & 1.319 \\ & 1.382 \\ & 1.445 \\ & 1.508 \end{aligned}$	$\begin{aligned} & 0-824 \\ & 0.850 \\ & 0.875 \\ & 0.901 \\ & 0.926 \end{aligned}$	$\begin{aligned} & 1 \cdot 810 \\ & 1 \cdot 901 \\ & 1-992 \\ & 2 \cdot 0.02 \\ & 2 \cdot 173 \end{aligned}$	$\begin{aligned} & 0.856 \\ & 0.883 \\ & 0.910 \\ & 0.938 \\ & 0.965 \end{aligned}$	$\begin{aligned} & 3.008 \\ & 3.159 \\ & 3-309 \\ & 3-460 \\ & 3.611 \end{aligned}$
$\begin{aligned} & 1-90 \\ & 1-95 \\ & 2.00 \\ & 200 \\ & 2.10 \end{aligned}$	$\begin{aligned} & .0-985 \\ & 0-908 \\ & 0-931 \\ & 0-953 \\ & 0-976 \end{aligned}$	$\begin{aligned} & 1 \cdot 177 \\ & 1.274 \\ & 1.271 \\ & 1.318 \\ & 1.365 \end{aligned}$	0-917 0.941 0.965 0.989 1.013	$\begin{aligned} & 1.571 \\ & 1.634 \\ & 1.697 \\ & 1.760 \\ & 1.823 \end{aligned}$	$\begin{aligned} & 0.952 \\ & 0.978 \\ & 1.003 \\ & 1.029 \\ & 1.054 \end{aligned}$	$\begin{aligned} & 2.264 \\ & 2.354 \\ & 2.445 \\ & 2.536 \\ & 2.627 \end{aligned}$	$\begin{aligned} & 0.992 \\ & 1.019 \end{aligned}$	$\begin{aligned} & 3.762 \\ & 3.912 \end{aligned}$
$\begin{aligned} & 2 \cdot 15 \\ & 2 \cdot 20 \\ & 2 \cdot 25 \\ & 2 \cdot 30 \\ & 2 \cdot 35 \end{aligned}$	$\begin{aligned} & 0.999 \\ & 1.022 \\ & 1.045 \\ & 1.068 \\ & 1.091 \end{aligned}$	$\begin{aligned} & 1.413 \\ & 1.460 \\ & 1.507 \\ & 1.554 \\ & 1.601 \end{aligned}$	$\begin{aligned} & 1.037 \\ & 1.061 \\ & 1.086 \\ & 1.110 \\ & 1.134 \end{aligned}$	$\begin{aligned} & 1.836 \\ & 1.949 \\ & 2.012 \\ & 2.075 \\ & 2.138 \end{aligned}$	$\begin{aligned} & 1.050 \\ & 1.105 \\ & 1.131 \\ & 1.157 \\ & 1.182 \end{aligned}$	$\begin{aligned} & 2.717 \\ & 2.808 \\ & 2.899 \\ & 2.989 \\ & 3.080 \end{aligned}$		
$\begin{aligned} & 2 \cdot 40 \\ & 245 \\ & 2.50 \\ & 2.55 \\ & 2.60 \end{aligned}$	$\begin{aligned} & 1 \cdot 114 \\ & 1 \cdot 137 \\ & 1 \cdot 159 \\ & 1 \cdot 182 \\ & 1 \cdot 205 \end{aligned}$	$\begin{aligned} & 1.648 \\ & 1.695 \\ & 1.743 \\ & 1+790 \\ & 1.837 \end{aligned}$	$\begin{aligned} & 1.158 \\ & 1.182 \\ & 1.206 \\ & 1.231 \\ & 1.255 \end{aligned}$	$\begin{aligned} & 2 \cdot 201 \\ & 2.264 \\ & 2 \cdot 327 \\ & 2 \cdot 390 \\ & 2.453 \end{aligned}$	$\begin{aligned} & 1.208 \\ & 1.233 \\ & 1.259 \\ & 1-284 \\ & 1.310 \end{aligned}$	$\begin{aligned} & 3 \cdot 171 \\ & 3.262 \\ & 3.352 \\ & 3.443 \\ & 3.534 \end{aligned}$		
$\begin{aligned} & 2.65 \\ & 2.70 \\ & 2.75 \\ & 2.80 \\ & 2.85 \end{aligned}$	$\begin{aligned} & 1.228 \\ & 1.251 \\ & 1.274 \\ & 1.297 \\ & 1.320 \end{aligned}$	$\begin{aligned} & 1 \cdot 884 \\ & 1.931 \\ & 1.978 \\ & 2.026 \\ & 2.073 \end{aligned}$	$\begin{aligned} & 1.279 \\ & 1.303 \\ & 1.327 \\ & 1.351 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 2.516 \\ & 2.579 \\ & 2.642 \\ & 2.705 \\ & 2.768 \end{aligned}$	$\begin{aligned} & 1.336 \\ & 1.361 \\ & 1.387 \\ & 1.412 \\ & 1.438 \end{aligned}$	$\begin{aligned} & 3.624 \\ & 3.715 \\ & 3.806 \\ & 3.897 \\ & 3.987 \end{aligned}$		

WORKING STRESS METHOD

TABLE 77 FLEXURE-REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

$\begin{aligned} & M / b d^{2} \\ & \mathrm{~N} / \mathrm{mm}^{1} \end{aligned}$	$d^{\prime} / d=0.05$		$d^{\prime} / d=0 \cdot 10$		$d^{3} / d=0.15$		$\begin{gathered} \sigma_{\mathrm{cke}}=7.0 \mathrm{~N} / \mathrm{mm}^{2} \\ \sigma_{24}=230 \mathrm{~N} / \mathrm{mm}^{2} \\ d^{2} / d=0.20 \end{gathered}$	
	$P_{P_{8}}$	$\boldsymbol{P}_{\text {e }}$	$P_{\text {Pt }}$	P_{0}	$P_{\text {P }}$	P_{6}	$P_{P_{k}}$	P_{a}
$\begin{aligned} & 0.92 \\ & 0.95 \\ & 1.00 \\ & 1.05 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 0.442 \\ & 0-456 \\ & 0-479 \\ & 0-502 \\ & 0-525 \end{aligned}$	$\begin{aligned} & 0-007 \\ & 0-035 \\ & 0-083 \\ & 0.131 \\ & 0-179 \end{aligned}$	$\begin{aligned} & 0.443 \\ & 0457 \\ & 0.481 \\ & 0.505 \\ & 0.530 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0-047 \\ & 0.111 \\ & 0.175 \\ & 0.239 \end{aligned}$	$\begin{aligned} & 0.443 \\ & 0458 \\ & 0484 \\ & 0.509 \\ & 0.535 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.068 \\ & 0.160 \\ & 0.252 \\ & 0.344 \end{aligned}$	$\begin{aligned} & 0.443 \\ & 0449 \\ & 0486 \\ & 0-514 \\ & 0-541 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.113 \\ & 0.266 \\ & 0.419 \\ & 0.572 \end{aligned}$
$\begin{aligned} & 1 \cdot 15 \\ & 1.20 \\ & 125 \\ & 1.30 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 0.548 \\ & 0-571 \\ & 0-593 \\ & 0.616 \\ & 0.6 .99 \end{aligned}$	$\begin{aligned} & 0.227 \\ & 0-275 \\ & 0-323 \\ & 0-370 \\ & 0-418 \end{aligned}$	$\begin{aligned} & 0-554 \\ & 0.578 \\ & 0.602 \\ & 0.626 \\ & 0.650 \end{aligned}$	$\begin{aligned} & 0-303 \\ & 0.367 \\ & 0-431 \\ & 0-495 \\ & 0-558 \end{aligned}$	$\begin{aligned} & 0-560 \\ & 0.586 \\ & 0.612 \\ & 0.637 \\ & 0.663 \end{aligned}$	0436 $0-528$ 0620 0712 0-805	$\begin{aligned} & 0.568 \\ & 0.595 \\ & 0.622 \\ & 0.650 \\ & 0.677 \end{aligned}$	$\begin{aligned} & 0.725 \\ & 0.878 \\ & 1.031 \\ & 1 \cdot 184 \\ & 1.337 \end{aligned}$
$\begin{aligned} & 1.40 \\ & 1.45 \\ & 1.50 \\ & 1.55 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 0.662 \\ & 0.685 \\ & 0.708 \\ & 0.731 \\ & 0.754 \end{aligned}$	$\begin{aligned} & 0-466 \\ & 0.514 \\ & 0.562 \\ & 0.610 \\ & 0.658 \end{aligned}$	$\begin{aligned} & 0.674 \\ & 0.699 \\ & 0.723 \\ & 0.747 \\ & 0.771 \end{aligned}$	$\begin{aligned} & 0.622 \\ & 0.686 \\ & 0.750 \\ & 0.814 \\ & 0.878 \end{aligned}$	$\begin{aligned} & 0.683 \\ & 0.714 \\ & 0.739 \\ & 0.765 \\ & 0.791 \end{aligned}$	$\begin{aligned} & 0.897 \\ & 0-989 \\ & 1.081 \\ & 1.173 \\ & 1.265 \end{aligned}$	0.704 0.731 0758 $0-785$ 0-813	$\begin{aligned} & 1 \cdot 490 \\ & 1.643 \\ & 1 \cdot 796 \\ & 1 \cdot 949 \\ & 2 \cdot 102 \end{aligned}$
$\begin{aligned} & 1.65 \\ & 1.70 \\ & 1.75 \\ & 1.80 \\ & 1.85 \end{aligned}$	$\begin{aligned} & 0.777 \\ & 0799 \\ & 0.822 \\ & 0.845 \\ & 0.868 \end{aligned}$	$\begin{aligned} & 0-705 \\ & 0753 \\ & 0801 \\ & 0-849 \\ & 0-897 \end{aligned}$	$\begin{aligned} & 0-795 \\ & 0.819 \\ & 0-844 \\ & 0-868 \\ & 0-892 \end{aligned}$	$\begin{aligned} & 0.942 \\ & 1.006 \\ & 1.070 \\ & 1.134 \\ & 1.198 \end{aligned}$	$\begin{aligned} & 0816 \\ & 0.842 \\ & 0867 \\ & 0.893 \\ & 0-919 \end{aligned}$	$\begin{aligned} & 1.357 \\ & 1.449 \\ & 1.541 \\ & 1.633 \\ & 1.725 \end{aligned}$	$\begin{aligned} & 0.840 \\ & 0.867 \\ & 0.894 \\ & 0.921 \\ & 0.948 \end{aligned}$	$\begin{aligned} & 2.255 \\ & 2.408 \\ & 2.561 \\ & 2.714 \\ & 2.867 \end{aligned}$
$\begin{aligned} & 1 \cdot 90 \\ & 1 \cdot 95 \\ & 2 \cdot 00 \\ & 2 \cdot 05 \\ & 2 \cdot 10 \end{aligned}$	$\begin{aligned} & 0-891 \\ & 0.914 \\ & 0.937 \\ & 0-990 \\ & 0-982 \end{aligned}$	$\begin{aligned} & 0-945 \\ & 0-993 \\ & 1-040 \\ & 1-088 \\ & 1-136 \end{aligned}$	$\begin{aligned} & 0-916 \\ & 0-940 \\ & 0.964 \\ & 0.988 \\ & 1.013 \end{aligned}$	$\begin{aligned} & 1.262 \\ & 1-325 \\ & 1.389 \\ & 1.453 \\ & 1-517 \end{aligned}$	$\begin{aligned} & 0.944 \\ & 0970 \\ & 0995 \\ & 1.021 \\ & 1.046 \end{aligned}$	$\begin{aligned} & 1.817 \\ & 1-909 \\ & 2.002 \\ & 2.094 \\ & 2-186 \end{aligned}$	$\begin{aligned} & 0.976 \\ & 1.003 \\ & 1.030 \\ & 1.057 \\ & 1.084 \end{aligned}$	$\begin{aligned} & 3 \cdot 020 \\ & 3 \cdot 173 \\ & 3.326 \\ & 3-479 \\ & 3 \cdot 632 \end{aligned}$
$\begin{aligned} & 2 \cdot 15 \\ & 2 \cdot 20 \\ & 2 \cdot 25 \\ & 2 \cdot 30 \\ & 2 \cdot 35 \end{aligned}$	$\begin{aligned} & 1.005 \\ & 1.028 \\ & 1.051 \\ & 1.074 \\ & 1.097 \end{aligned}$	$\begin{aligned} & 1 \cdot 184 \\ & 1.232 \\ & 1.280 \\ & 1.328 \\ & 1.376 \end{aligned}$	$\begin{aligned} & 1-037 \\ & 1-061 \\ & 1-085 \\ & 1 \cdot 109 \\ & 1.133 \end{aligned}$	$\begin{aligned} & 1.581 \\ & 1.645 \\ & 1.769 \\ & 1.773 \\ & 1.837 \end{aligned}$	$\begin{aligned} & 1-072 \\ & 1098 \\ & 1 \cdot 123 \\ & 1 \cdot 149 \\ & 1 \cdot 174 \end{aligned}$	$\begin{aligned} & 2-278 \\ & 2-370 \\ & 2-462 \\ & 2-554 \\ & 2-646 \end{aligned}$	$\frac{1 \cdot 111}{1 \cdot 139}$	$\begin{aligned} & 3.785 \\ & 3938 \end{aligned}$
$\begin{aligned} & 2-40 \\ & 2-45 \\ & 2-50 \\ & 2-55 \\ & 2-60 \end{aligned}$	$\begin{aligned} & 1 \cdot 120 \\ & 1 \cdot 143 \\ & 1 \cdot 166 \\ & 1 \cdot 188 \\ & 1 \cdot 211 \end{aligned}$	$\begin{aligned} & 1 \cdot 423 \\ & 1471 \\ & 1-519 \\ & 1-567 \\ & 1.615 \end{aligned}$	$\begin{aligned} & 1+158 \\ & 1+182 \\ & 1-206 \\ & 1 \cdot 230 \\ & 1-254 \end{aligned}$	$\begin{aligned} & 1.901 \\ & 1-965 \\ & 2.028 \\ & 2.092 \\ & 2.156 \end{aligned}$	$\begin{aligned} & 1.200 \\ & 1.225 \\ & 1 \cdot 251 \\ & 1.277 \\ & 1.302 \end{aligned}$	$\begin{aligned} & 2 \cdot 738 \\ & 2 \cdot 830 \\ & 2.922 \\ & 3.014 \\ & 3.106 \end{aligned}$		
$\begin{aligned} & 2 \cdot 65 \\ & 2 \cdot 70 \\ & 2.75 \\ & 2 \cdot 80 \\ & 2 \cdot 85 \end{aligned}$	$\begin{aligned} & 1.234 \\ & 1.257 \\ & 1.280 \\ & 1.303 \\ & 1.326 \end{aligned}$	$\begin{aligned} & 1.663 \\ & 1.711 \\ & 1.758 \\ & 1.806 \\ & 1.854 \end{aligned}$	$\begin{aligned} & 1 \cdot 278 \\ & 1 \cdot 303 \\ & 1 \cdot 327 \\ & 1 \cdot 351 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 2-220 \\ & 2284 \\ & 2 \cdot 348 \\ & 2 \cdot 412 \\ & 2476 \end{aligned}$	$\begin{aligned} & 1.328 \\ & 1.353 \\ & 1.379 \\ & 1.404 \\ & 1.430 \end{aligned}$	$\begin{aligned} & 3 \cdot 198 \\ & 3.291 \\ & 3.383 \\ & 3.475 \\ & 3.567 \end{aligned}$		
$\begin{aligned} & 2-90 \\ & 2-95 \\ & 3-00 \\ & 3 \cdot 05 \\ & 3 \cdot 10 \end{aligned}$	$\begin{aligned} & 1 \cdot 349 \\ & 1.371 \\ & 1.394 \\ & 1.417 \\ & 1.440 \end{aligned}$	$\begin{aligned} & 1.902 \\ & 1.950 \\ & 1.998 \\ & 2.046 \\ & 2.093 \end{aligned}$	$\begin{aligned} & 1.399 \\ & 1.423 \\ & 1.447 \\ & 1.472 \\ & 1.496 \end{aligned}$	$\begin{aligned} & 2.540 \\ & 2.604 \\ & 2.668 \\ & 2.731 \\ & 2.795 \end{aligned}$	$\begin{aligned} & 1.456 \\ & 1.481 \\ & 1.507 \\ & 1.532 \\ & 1.558 \end{aligned}$	$\begin{aligned} & 3.659 \\ & 3.751 \\ & 3.843 \\ & 3.935 \\ & 4.927 \end{aligned}$		

TABLE 78 FLEXURE - REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

$M / b d^{2}$, $\mathrm{N} / \mathrm{mm}^{3}$	$d^{\prime} / d=0.05$		$d^{\prime} / d=0.10$		$d^{\prime} / d=0.15$		$\begin{gathered} \sigma_{c b s}=8.5 \mathrm{~N} / \mathrm{mm}^{3} \\ \sigma_{\mathrm{st}}=230 \mathrm{~N} / \mathrm{mm}^{3} \\ d^{3} / d=0.20 \end{gathered}$	
	Pr_{t}	$\boldsymbol{P}_{\text {c }}$	P_{1}	P_{0}	$P_{P_{1}}$	P_{6}	$P_{P_{1}}$	P_{e}
$\begin{aligned} & 1 \cdot 11 \\ & 1 \cdot 15 \\ & 1 \cdot 20 \\ & 1 \cdot 25 \\ & 1 \cdot 30 \end{aligned}$	$\begin{aligned} & 0.534 \\ & 0.552 \\ & 0.575 \\ & 0.598 \\ & 0.621 \end{aligned}$	$\begin{aligned} & 0-001 \\ & 0-040 \\ & 0-088 \\ & 0.137 \\ & 0.185 \end{aligned}$	$\begin{aligned} & 0.534 \\ & 0.553 \\ & 0.577 \\ & 0.602 \\ & 0.626 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.053 \\ & 0.118 \\ & 0.183 \\ & 0.247 \end{aligned}$	$\begin{aligned} & 0.534 \\ & 0.554 \\ & 0.580 \\ & 0.606 \\ & 0.631 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.077 \\ & 0.170 \\ & 0.263 \\ & 0.356 \end{aligned}$	$\begin{aligned} & 0.534 \\ & 0.556 \\ & 0.583 \\ & 0.610 \\ & 0.637 \end{aligned}$	$\begin{aligned} & 0-004 \\ & 0.128 \\ & 02282 \\ & 0.437 \\ & 0.592 \end{aligned}$
$\begin{aligned} & 1.35 \\ & 1.40 \\ & 1.45 \\ & 1.50 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 0.644 \\ & 0.667 \\ & 0.690 \\ & 0.712 \\ & 0735 \end{aligned}$	$\begin{aligned} & 0.234 \\ & 0.282 \\ & 0.330 \\ & 0.379 \\ & 0.427 \end{aligned}$	$\begin{aligned} & 0.650 \\ & 0.674 \\ & 0.698 \\ & 0.722 \\ & 0.747 \end{aligned}$	$\begin{aligned} & 0.312 \\ & 0.377 \\ & 0.441 \\ & 0.506 \\ & 0.570 \end{aligned}$	$\begin{aligned} & 0657 \\ & 0682 \\ & 0.708 \\ & 0.734 \\ & 0.759 \end{aligned}$	$\begin{aligned} & 0.449 \\ & 0.542 \\ & 0.636 \\ & 0.729 \\ & 0.822 \end{aligned}$	$\begin{aligned} & 0-665 \\ & 0.692 \\ & 0-719 \\ & 0-746 \\ & 0-773 \end{aligned}$	$\begin{aligned} & 0.747 \\ & 0.901 \\ & 1.056 \\ & 1.211 \\ & 1.366 \end{aligned}$
$\begin{aligned} & 1.60 \\ & 1.65 \\ & 1.70 \\ & 1.75 \\ & 1.80 \end{aligned}$	$\begin{aligned} & 0.758 \\ & 0.781 \\ & 0-804 \\ & 0.827 \\ & 0.850 \end{aligned}$	$\begin{aligned} & 0.476 \\ & 0.524 \\ & 0.572 \\ & 0.621 \\ & 0.669 \end{aligned}$	$\begin{aligned} & 0.771 \\ & 0.795 \\ & 0.819 \\ & 0.843 \\ & 0.867 \end{aligned}$	$\begin{aligned} & 0.635 \\ & 0.700 \\ & 0.764 \\ & 0.829 \\ & 0.894 \end{aligned}$	$\begin{aligned} & 0.785 \\ & 0.810 \\ & 0.836 \\ & 0.861 \\ & 0.887 \end{aligned}$	$\begin{aligned} & 0.915 \\ & 1.008 \\ & 1 \cdot 101 \\ & 1 \cdot 194 \\ & 1 \cdot 287 \end{aligned}$	$\begin{aligned} & 0-800 \\ & 0-828 \\ & 0-855 \\ & 0-882 \\ & 0-909 \end{aligned}$	$\begin{aligned} & 1.520 \\ & 1.675 \\ & 1.830 \\ & 1-985 \\ & 2.139 \end{aligned}$
$\begin{aligned} & 1.85 \\ & 1.90 \\ & 1.95 \\ & 2.00 \\ & 2.05 \end{aligned}$	$\begin{aligned} & 0.873 \\ & 0.896 \\ & 0.918 \\ & 0.941 \\ & 0.964 \end{aligned}$	$\begin{aligned} & 0.718 \\ & 0.766 \\ & 0.814 \\ & 0.863 \\ & 0.911 \end{aligned}$	$\begin{aligned} & 0.891 \\ & 0.916 \\ & 0.940 \\ & 0.964 \\ & 0.988 \end{aligned}$	$\begin{aligned} & 0.958 \\ & 1.023 \\ & 1.088 \\ & 1.152 \\ & 1.217 \end{aligned}$	$\begin{aligned} & 0.913 \\ & 0.938 \\ & 0.964 \\ & 0.999 \\ & 1.015 \end{aligned}$	$\begin{aligned} & 1.381 \\ & 1.474 \\ & 1.567 \\ & 1.690 \\ & 1.753 \end{aligned}$	$\begin{aligned} & 0-936 \\ & 0.963 \\ & 0.991 \\ & 1.018 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 2.294 \\ & 2.449 \\ & 2.604 \\ & 2.798 \\ & 2.913 \end{aligned}$
$\begin{aligned} & 2 \cdot 10 \\ & 2 \cdot 15 \\ & 2 \cdot 20 \\ & 2 \cdot 25 \\ & 2 \cdot 30 \end{aligned}$	$\begin{aligned} & 0.987 \\ & 1.010 \\ & 1.033 \\ & 1.056 \\ & 1.079 \end{aligned}$	$\begin{aligned} & 0-960 \\ & 1.008 \\ & 1.057 \\ & 1.105 \\ & 1.153 \end{aligned}$	$\begin{aligned} & 1.012 \\ & 1.016 \\ & 1.061 \\ & 1.085 \\ & 1.109 \end{aligned}$	$\begin{aligned} & 1.282 \\ & 1+346 \\ & 1.411 \\ & 1.475 \\ & 1.540 \end{aligned}$	$\begin{aligned} & 1.040 \\ & 1.066 \\ & 1.092 \\ & 1.117 \\ & 1.143 \end{aligned}$	$\begin{aligned} & 1 \cdot 846 \\ & 1.939 \\ & 2.032 \\ & 2 \cdot 126 \\ & 2 \cdot 219 \end{aligned}$	$\begin{aligned} & 1.072 \\ & 1.099 \\ & 1.126 \\ & 1.154 \\ & 1.181 \end{aligned}$	$\begin{aligned} & 3.068 \\ & 3.223 \\ & 3.377 \\ & 3.532 \\ & 3.687 \end{aligned}$
$\begin{aligned} & \mathbf{2} \cdot 35 \\ & 2 \cdot 40 \\ & 2 \cdot 45 \\ & 2 \cdot 50 \\ & 2 \cdot 55 \end{aligned}$	$\begin{aligned} & 1 \cdot 101 \\ & 1 \cdot 124 \\ & 1 \cdot 147 \\ & 1 \cdot 170 \\ & 1 \cdot 193 \end{aligned}$	$\begin{aligned} & 1 \cdot 202 \\ & 1.250 \\ & 1 \cdot 299 \\ & 1.347 \\ & 1.395 \end{aligned}$	$\begin{aligned} & 1133 \\ & 1157 \\ & 1 \cdot 181 \\ & 1205 \\ & 1 \cdot 230 \end{aligned}$	$\begin{aligned} & 1.695 \\ & 1.669 \\ & 1.734 \\ & 1.799 \\ & 1.863 \end{aligned}$	$\begin{aligned} & 1 \cdot 168 \\ & 1 \cdot 194 \\ & 1 \cdot 219 \\ & 1 \cdot 245 \\ & 1 \cdot 271 \end{aligned}$	$\begin{aligned} & 2 \cdot 312 \\ & 2 \cdot 405 \\ & 2 \cdot 498 \\ & 2 \cdot 591 \\ & 2 \cdot 684 \end{aligned}$	$\begin{aligned} & 1.208 \\ & 1.235 \end{aligned}$	$\begin{aligned} & 3 \cdot 842 \\ & 3 \cdot 996 \end{aligned}$
$\begin{aligned} & 2-60 \\ & 2.65 \\ & 2.70 \\ & 2.75 \\ & 2.80 \end{aligned}$	$\begin{aligned} & 1216 \\ & 1239 \\ & 1262 \\ & 1285 \\ & 1.307 \end{aligned}$	$\begin{aligned} & 1.444 \\ & 1.492 \\ & 1.541 \\ & 1-589 \\ & 1.637 \end{aligned}$	$\begin{aligned} & 1-254 \\ & 1.278 \\ & 1.302 \\ & 1.326 \\ & 1.350 \end{aligned}$	$\begin{aligned} & 1.928 \\ & 1.993 \\ & 2.057 \\ & 2.122 \\ & 2.186 \end{aligned}$	$\begin{aligned} & 1.296 \\ & 1 \cdot 322 \\ & 1.347 \\ & 1.373 \\ & 1.398 \end{aligned}$	$\begin{aligned} & 2-777 \\ & 2-871 \\ & 2-964 \\ & 3-057 \\ & 3-150 \end{aligned}$		
$\begin{aligned} & 2.85 \\ & 2.90 \\ & 2.95 \\ & 3 \cdot 90 \\ & 3 \cdot 05 \end{aligned}$	$\begin{aligned} & 1.330 \\ & 1.353 \\ & 1.376 \\ & 1.399 \\ & 1.422 \end{aligned}$	$\begin{aligned} & 1.686 \\ & 1.734 \\ & 1.783 \\ & 1.831 \\ & 1.879 \end{aligned}$	$\begin{aligned} & 1 \cdot 375 \\ & 1.399 \\ & 1.423 \\ & 1 \cdot 447 \\ & 1 \cdot 471 \end{aligned}$	$\begin{aligned} & 2.251 \\ & 2.316 \\ & 2.380 \\ & 2.445 \\ & 2.510 \end{aligned}$	$\begin{aligned} & 1.424 \\ & 1.450 \\ & 1.475 \\ & 1.501 \\ & 1.526 \end{aligned}$	$\begin{aligned} & 3 \cdot 243 \\ & 3 \cdot 336 \\ & 3 \cdot 429 \\ & 3 \cdot 522 \\ & 3.616 \end{aligned}$		
$\begin{aligned} & 3 \cdot 10 \\ & 3 \cdot 15 \\ & 3 \cdot 20 \\ & 3 \cdot 25 \\ & 3 \cdot 30 \end{aligned}$	$\begin{aligned} & 1.445 \\ & 1.468 \\ & 1.490 \\ & 1.513 \\ & 1.536 \end{aligned}$	$\begin{aligned} & 1.928 \\ & 1.976 \\ & 2.025 \\ & 2.073 \\ & 2.122 \end{aligned}$	$\begin{aligned} & 1.495 \\ & 1.520 \\ & 1.544 \\ & 1.568 \\ & 1.592 \end{aligned}$	$\begin{aligned} & 2.574 \\ & 2.639 \\ & 2.704 \\ & 2.768 \\ & 2.833 \end{aligned}$	$\begin{aligned} & 1.552 \\ & 1.578 \\ & 1.603 \\ & 1.629 \\ & 1.654 \end{aligned}$	$\begin{aligned} & 3 \cdot 709 \\ & 3 \cdot 800 \\ & 3 \cdot 895 \\ & 3 \cdot 988 \\ & 4.081 \end{aligned}$		

WORKING STRESS METHOD

TABLE 79 FLEXURE - REINFORCEMENT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

TABLE 80 SHEAR - PERMISSIBLE SHEAR STRESS IN CONCRETE, $\tau c, N / \mathrm{mm}^{2}$

$\frac{100 \mathrm{Aat}}{6 d}$	Gradi of Concretr					
	M15	M20	M25	M30	M35	M40
0.20	0.20	0.20	0.21	0.21	0.21	0.21
0.30	0.24	0.24	0.25	0.25	0.25	0.25
0.40	0.27	0.27	0.28	0.28	0.29	0.29
0.50	029	$0 \cdot 30$	0.31	0.31	0.31	0.32
0.60	0.31	0.32	0.33	0.33	0.34	0.34
0.70	0.33	0.34	0.35	0.36	0.36	0.37
0.80	0.34	0.36	0.37	0.38	0.38	0.39
0.90	0.36	0.37	0.39	0.39	0.40	0.41
1.00	0.37	0.39	0-40	0.41	0.42	0.42
$1 \cdot 10$	0.38	$0 \cdot 40$	0.42	0.43	0.43	0.44
$1 \cdot 20$	$0 \cdot 40$	0.41	0.43	0.44	0.45	0.45
$1 \cdot 30$	0.41	0.43	0.44	0.45	0.46	0.47
1.40	0.42	0.44	0.45	0.46	0.47	$0 \cdot 48$
$1 \cdot 50$	042	0.45	$0 \cdot 46$	0.48	0.49	0.49
$1 \cdot 60$	0.43	0.46	0.47	0.49	0.50	0.51
1.70	0.44	0.47	0.48	0.50	0.51	0.52
1.80	$0 \cdot 44$	0.47	0.49	0.51	0.52	0.53
1-90	0.44	0.48	0.50	0.52	0.53	0.54
$2 \cdot 00$	0.44	0.49	0.51	0.53	0.54	0.55
$2 \cdot 10$	0.44	0.50	0.52	0.54	0.55	0.56
2.20	0.44	0.51	0.53	0.54	0.56	0.57
$2 \cdot 30$	0.44	0.51	0.53	0.55	0.57	$0 \cdot 58$
$2 \cdot 40$	0.44	0.51	$0 \cdot 54$	0.56	0.57	$0 \cdot 59$
$2 \cdot 50$	0.44	0.51	0.55	0.57	0.58	$0 \cdot 60$
2.60	0.44	0.51	0.56	0.57	0.59	$0 \cdot 60$
$2 \cdot 70$	0.44	0.51	$0 \cdot 56$	0.58	0.60	0.61
$2 \cdot 80$	0.44	0.51	0.57	0.59	0.60	$0 \cdot 62$
$2 \cdot 90$	0.44	0.51	0.57	$0 \cdot 59$	0.61	0.63

TABLE 81 SHEAR — VERTICAL STIRRUPS
Values of $\frac{V}{d}$ for two legged stirrups, $\mathrm{kN} / \mathrm{cm}$

Stirxup	$\frac{\sigma_{s V}=140 \mathrm{~N} / \mathrm{mm}^{2}}{\text { DIAMETER, mm }}$				$\sigma_{\text {Sv }}=230 \mathrm{~N} / \mathrm{mm}^{2}$			
					DIAMETER, mm			
Spacing, cm	6	8	10	12	$\sqrt{6}$	8	10	12
5	1.583	$2 \cdot 815$	4.398	6.333	$2 \cdot 601$	4.624	7.226	10.405
6	1.314	2.346	3.665	$5 \cdot 278$	2.168	3.854	6.021	8.671
7	$1 \cdot 131$	2.011	$3 \cdot 142$	4.524	1.858	3.303	$5 \cdot 161$	$7 \cdot 432$
8	0.990	1.759	2.749	3.958	$1 \cdot 626$	2.890	4.516	6.503
9	0.880	1.564	2.443	3.519	1.445	2.569	4.014	5.781
10	0.792	1.407	$2 \cdot 199$	$3 \cdot 167$	$1 \cdot 301$	$2 \cdot 312$	3.613	5-202
11	0.720	1.279	1.999	2.879	1-182	2.102	3-284	4.730
12	0.660	1.173	1.833	2.639	1.084	1.927	3.012	4.335
13	0.609	1.083	1.692	2.436	1.000	1.779	2.779	4.002
14	0.565	1.005	1.571	$2 \cdot 262$	0.920	1.652	2.580	3.716
15	0.528	0.938	1.466	$2 \cdot 111$	0.867	1.541	2.409	3•168
16	0.495	0.880	1.374	1.979	0.813	1.445	2.258	$3 \cdot 252$
17	0.466	0.828	1.294	1.863	0.765	1.360	$2 \cdot 125$	3.060
18	0.440	0.782	1.222	1.769	0.723	1-285	2.007	$2 \cdot 890$
19	0.417	0.741	$1 \cdot 157$	1.667	$0 \cdot 605$	1.217	1.901	$2 \cdot 738$
20	0.396	0.704	$1 \cdot 100$	1.583	0.650	$1 \cdot 156$	1.806	2.601
25	0.317	0.563	0.880	$1 \cdot 267$	0.520	0.925	1.445	2.081
30	0.264	0.469	0.733	1.056	0.432	0.771	1.204	1.734
35	0.226	0.402	0.628	0.905	0.372	0.661	1.032	1.486
40	0.198	0.352	0.550	0.792	0.325	0.578	0.903	$1 \cdot 301$
45	0.176	0.313	0.489	0.704	0.289	0.514	0.803	1-156

TABLE 82 SHEAR - BENT UP BARS

Valuesof V_{s} for single bar, kN

$\underset{\substack{\text { Bar } \\ \text { DIAMETER, } \\ \text { mm }}}{ }$	$\begin{aligned} \sigma_{s v} & =140 \mathrm{~N} / \mathrm{mm}^{2} \text { up to } 20 \mathrm{~mm} \text { diameter } \\ & =130 \mathrm{~N} / \mathrm{mm}^{4} \text { over } 20 \mathrm{~mm} \text { diameter } \end{aligned}$		$\sigma_{s v}=\underbrace{230 ~ N / m m}$	
	$<=45^{\circ}$	$\alpha=60^{\circ}$	$\alpha=45^{\circ}$	$\alpha=60^{\circ}$
10	7.78	9.52	12.77	$15 \cdot 64$
12	11.20	$13 \cdot 71$	18.39	2253
16	19.90	24.38	32.70	40.05
18	$25 \cdot 19$	30.86	41.39	50.69
20	31-10	38.09	51.09	62.58
22	34.94	42.80	61.82	75.72
25	$45 \cdot 12$	55.26	79.83	97.77
28	56.60	69.32	$100 \cdot 14$	122.65
32	73.93	90.54	$130 \cdot 80$	160.19
36	93-57	$114 \cdot 60$	$165 \cdot 54$	202.75

Nore - a is the angle between the bent up bar and the axis of the member.

TABLE 83 DEVELOPMENT LENGTH FOR PLAIN BARS

$$
\begin{aligned}
\sigma_{\mathrm{st}} & =140 \mathrm{~N} / \mathrm{mm}^{2} \text { for bars up to } 20 \mathrm{~mm} \text { diameter } \\
& =130 \mathrm{~N} / \mathrm{mm}^{2} \text { for bars over } 20 \mathrm{~mm} \text { diameter } \\
\sigma_{\mathrm{se}} & =130 \mathrm{~N} / \mathrm{mm}^{2} \text { for all diameter }
\end{aligned}
$$

Tabulated values are in centimetres.

Bar	Tension Bars				Compression Bars			
	Grade of Concrete				Grade of Concrete			
DIAMETER, mm	M15	M20	M25	M30	M15	M20	M25	M30
6	35.0	26.3	23.3	21.0	26.0	19.5	$17 \cdot 3$	$15 \cdot 6$
8	46.7	$35 \cdot 0$	31.1	28.0	34.7	26.0	$23 \cdot 1$	$20 \cdot 8$
10	58.3	$43 \cdot 8$	$38 \cdot 9$	$35 \cdot 0$	$43 \cdot 3$	32:5	28.9	26.0
12	70.0	$52 \cdot 5$	46.7	42.0	52.0	39.0	$34 \cdot 7$	31.2
16	$93 \cdot 3$	$70 \cdot 0$	62.2	56.0	$69 \cdot 3$	52.0	$46 \cdot 2$	41.6
18	$105 \cdot 0$	78.8	70.0	$63 \cdot 0$	$78 \cdot 0$	58.5	52.0	46.8
20	116.7	87.5	77.8	70.0	86.7	65.0	57.8	52.0
22	119.2	89.4	79.4	$71 \cdot 5$	95•3	$71 \cdot 5$	$63 \cdot 6$	57.2
25	$135 \cdot 4$	101.6	$90 \cdot 3$	$81 \cdot 3$	108.3	. $81 \cdot 3$	72.2	65.0
28	151.7	113.8	$101 \cdot 1$	91.0	$121 \cdot 3$	91.0	80.9	72.8
32	$173 \cdot 3$	130.0	115.6	104.0	138.7	104.0	$92 \cdot 4$	$83 \cdot 2$
36	195.0	146.3	130.0	117.0	156.0	117.0	1040	93.6

TABLE 84 DEVELOPMENT LENGTH FOR DEFORMED BARS

Tabulated values are in centimetres.

TABLE 85 DEVELOPMENT LENGTH FOR DEFORMED BARS
Tabulated values are in centimetres.

	Tension Bars				Compression Bars			
Bar	Grade of Concrete				Grade of Concrete			
DIAMETER, mm	M15	M20	M25	M30	M15	M20	M25	M30
6	49.1	36.8	32.7	29.5	$27 \cdot 1$	20.4	$18 \cdot 1$	$16 \cdot 3$
8	$65 \cdot 5$	49.1	$43 \cdot 7$	$39 \cdot 3$	$36 \cdot 2$	$27 \cdot 1$	$24 \cdot 1$	$21 \cdot 7$
10	81.8	61.4	54.6	$49 \cdot 1$	$45 \cdot 2$	33.9	$30 \cdot 2$	$27 \cdot 1$
12	98.2	$73 \cdot 7$	$65 \cdot 5$	58.9	54.3	40.7	$36 \cdot 2$	$32 \cdot 6$
16	131.0	98.2	$87 \cdot 3$	78.6	$72 \cdot 4$	54.3	48.3	$43 \cdot 4$
18	$147 \cdot 3$	$110 \cdot 5$	98.2	88.4	81.4	$61 \cdot 1$	$54 \cdot 3$	48.9
20	163.7	122.8	109.1	98.2	$90 \cdot 5$	67.9	60.3	54.3
22	180.1	135.0	120.0	108.0	99.5	$74 \cdot 6$	$66 \cdot 3$	59.7
25	204.6	153.5	136.4	122.8	113.1	$84 \cdot 8$	$75 \cdot 4$	67.9
28	229.2	171.9	$152 \cdot 8$	137.5	126.7	$95 \cdot 0$	$84 \cdot 4$	$76 \cdot 0$
32	$261 \cdot 9$	196.4	1746	$157 \cdot 1$	144.8	$108 \cdot 6$	96.5	86.9
36	$294 \cdot 6$	221.0	196.4	176.8	162.9	122.1	108.6	97.7

As in the Original Standard, this Page is Intentionally Left Blank

DEFLECTION CALCULATION

As in the Original Standard, this Page is Intentionally Left Blank

7. DEFLECTION CALCULATION

7.I EFFECTIVE MOMENT OF INERTIA

A method of calculating the deflections is given in Appendix E of the Code. This method requires the use of an effective moment of inertia Ieir given by the following equation

$$
I_{\text {eff }}=\frac{I_{\mathrm{r}}}{1 \cdot 2-\frac{M_{\mathrm{r}}}{M} \frac{z}{d}\left(1-\frac{x}{d}\right) \frac{b_{w}}{b}}
$$

but, $\quad I_{r} \leqslant I_{\text {eff }}<I_{\text {r }}$
where
I_{F} is the moment of inertia of the cracked section;
M_{r} is the cracking moment, equal to $\frac{f_{a} I_{t r}}{y_{t}}$ where
f_{a} is the modulus of rupture of concrete, $I_{\text {Ix }}$ is the moment of inertia of the gross section neglecting the reinforcement and y_{t} is the distance from the centroidal axis of the gross section to the extreme fibre in tension;
M is the maximum moment under service loads;
z is the lever arm;
d is the effective depth;
x is the depth of neutral axis;
b_{w} is the breadth of the web; and
b is the breadth of the compression face.
The values of x and z are those obtained by elastic theory. Hence $z=d-x / 3$ for rectangular sections; also $b=b_{w}$ for rectangular sections. For flanged sections where the flange is in compression, b will be equal to the flange width b_{r}. The value of z for flanged beams will depend on the flange dimensions, but in order to simplify the calculations it is conservatively assumed the value of z for flanged beam is also $d-x / 3$. With this assumption, the expression effective moment of inertia may be written as follows:

$$
\begin{aligned}
& \quad \frac{I_{\text {eff }}}{I_{\mathrm{r}}}=\frac{1}{1 \cdot 2-\frac{M_{\mathrm{r}}}{M}\left(1-\frac{x}{3 d}\right)\left(1-\frac{x}{d}\right) \frac{b_{\mathrm{w}}}{b_{\mathrm{r}}}} \\
& \text { but, } \frac{l_{\mathrm{eff}}}{I_{\mathrm{r}}} \geqslant 1 \\
& \text { and } I_{\mathrm{eff}}<I_{\mathrm{er}}
\end{aligned}
$$

Chart 89 can be used for finding the value of
$\frac{I_{\text {eff }}}{I_{\mathrm{r}}}$ in accordance with the above equation.

The chart takes into account the condition $\frac{I_{\text {eff }}}{I_{\mathrm{r}}} \geqslant 1$. After finding the value of $I_{\text {er }}$ it has to be compared with $I_{x x}$ and the lower of the two values should be used for calculating the deflection.
For continuous beams, a weighted average value of $I_{\text {eff }}$ should be used, as given in $B-2.1$ of the Code.

7.2 SHRINKAGE AND CREEP DEFLECTIONS

Deflections due to shrinkage and creep can be calculated in accordance with clauses $B-3$ and $B-4$ of the Code. This is illustrated in Example 12.

Example 12 Check for deflection

Calculate the deflection of a cantilever beam of the section designed in Example 3, with further data as given below:

Span of cantilever $\quad 4.0 \mathrm{~m}$ Bending moment at service $\quad 210 \mathrm{kN} . \mathrm{m}$ loads

Sixty percent of the above moment is due to permanent loads, the loading being distributed uniformly on the span.

$$
I_{\text {ur }}=\frac{b D^{3}}{12}=\frac{300 \times(600)^{3}}{12}=5.4 \times 10^{\circ} \mathrm{mm}^{4}
$$

From clause 5.2.2 of the Code,
Flexural tensile strength,

$$
\begin{gathered}
f_{c r}=0.7 \sqrt{f_{c \mathrm{ck}}} \mathrm{~N} / \mathrm{mm}^{2} \\
f_{c r}=0.7 \sqrt{15}=2.71 \mathrm{~N} / \mathrm{mm}^{2} \\
y_{t}=D / 2=\frac{600}{2}=300 \mathrm{~mm} \\
M_{\mathrm{r}}=\frac{f_{c \mathrm{c}} I_{\text {cr }}}{y_{t}}=\frac{2.71 \times 5.4 \times 10^{y}}{300} \\
=4.88 \times 10^{7} \mathrm{~N} . \mathrm{mm} \\
d^{\prime} / d=\left(\frac{3.75}{56.25}\right)=0.067
\end{gathered}
$$

$d^{\prime} / d=0.05$ will be used in referring to Tables.
From 5.2.3.1 of the Code,
$E_{c}=5700 \sqrt{f_{c k}} \mathrm{~N} / \mathrm{mm}^{2}$
$=5700 \sqrt{15}=22.1 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$
$E_{1}=200 \mathrm{kN} / \mathrm{mm}^{2}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{3}$
$m=E_{\mathrm{s}} / E_{\mathrm{e}}=\frac{2 \times 10^{3}}{22.1 \times 10^{3}}=9.05$

From Example 3,
$p_{1}=1.117, p_{c}=0.418$
$p_{\mathrm{c}}(m-1) /\left(p_{\mathrm{t}} m\right)=(0.418 \times 8.05) /$
$(1.117 \times 9.05)=0.333$
$p_{\mathrm{t}} m=1.117 \times 9.05=10.11$
Referring to Table 87,

$$
I_{r} /\left(b d^{3} / 12\right)=0.720
$$

$\therefore I_{\mathrm{r}}=0.720 \times 300 \times(562.5)^{3} / 12$

$$
=3.204 \times 10^{9} \mathrm{~mm}^{4}
$$

Referring to Table 91 ,

$$
\frac{x}{d}=0.338
$$

Moment at service load, $M=210 \mathrm{kN} . \mathrm{m}$ $=21.0 \times 10^{7} \mathrm{~N} . \mathrm{mm}$
$M_{r} / M=\frac{4.88 \times 10^{7}}{21.0 \times 10^{7}}=0.232$
Referring to Chart 89.

$$
I_{\mathrm{eti}} / I_{\mathrm{r}}=1.0
$$

$\therefore I_{\text {clf }}=I_{\mathrm{r}}=3.204 \times 10^{9} \mathrm{~mm}^{4}$
For a cantilever with uniformly distributed load,
Elastic deflection $=\frac{1}{4} \frac{M I^{2}}{E I_{\mathrm{cff}}}$

$$
\begin{align*}
& =\frac{21.0 \times 10^{7} \times(4000)^{2}}{4 \times 22.1 \times 10^{3} \times 3.204 \times 10^{9}} \\
& =11.86 \mathrm{~mm} \tag{1}
\end{align*}
$$

Deflection due to shrinkage (see clause B-3 of the Code):

$$
\begin{aligned}
a_{⿱ 乛} & =k_{3} \Psi_{\text {cs }} l^{2} \\
k_{3} & =0.5 \text { for cantilevers } \\
p_{\mathrm{t}} & =1.117, p_{\mathrm{c}}=0.418 \\
p_{\mathrm{t}}-p_{\mathrm{c}} & =1.117-0.418=0.699<1.0 \\
\therefore k_{4} & =0.72 \times \frac{p_{\mathrm{t}}-p_{\mathrm{c}}}{\sqrt{p_{\mathrm{t}}}} \\
& =0.72 \times \frac{(1.117-0.418)}{\sqrt{1.117}} \\
& =0.476
\end{aligned}
$$

In the absence of data, the value of the ultimate shrinkage strain ξ_{0} is taken as 0.0003 as given in 5.2.4.1 of the Code.

$$
D=600 \mathrm{~mm}
$$

\therefore Shrinkage curvature $\Psi_{\mathrm{cs}}=k_{4} \frac{\xi_{\mathrm{cs}}}{D}$

$$
\begin{align*}
= & \frac{0.476 \times 0.0003}{600}=2.38 \times 10^{-7} \\
a_{\mathrm{cs}} & =0.5 \times 2.38 \times 10^{-7} \times(4000)^{2} \\
& =1.90 \mathrm{~mm} \tag{2}
\end{align*}
$$

Deflection due to creep,

In the absence of data, the age at loading is assumed to be 28 days and the value of creep coefficient, θ is taken as 1.6 from 5.2.5.1 of the Code.

$$
\begin{aligned}
& E_{\mathrm{ce}}=\frac{E_{\mathrm{c}}}{1+\theta} \\
& =\frac{22.1 \times 10^{3}}{1+1.6}=8.5 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\
& m=\frac{E_{\mathrm{s}}}{E_{\mathrm{ce}}}=\frac{2 \times 10^{5}}{8.5 \times 10^{3}}=23.53 \\
& p_{\mathrm{t}}=1.117, \quad p_{\mathrm{i}}=0.418 \\
& p_{c}(m-1) /\left(p_{\mathrm{c}} m\right)=0.418(23.53-1) / \\
& (1.117 \times 23.53) \\
& =0.358
\end{aligned}
$$

Referring to Table 87,
$I_{\mathrm{r}} /\left(b d^{3} / 12\right)=1.497$
$I_{\mathrm{r}}=1.497 \times 300(562.5)^{3} / 12$
$=6.66 \times 10^{9} \mathrm{~mm}^{4}$
$I_{\mathrm{r}} \leqslant I_{\mathrm{eff}} \leqslant I_{\mathrm{gr}}$
$6.66 \mid \times 10^{9} \leqslant I_{\text {elf }} \leqslant 5.4 \times 10^{9}$
$\therefore I_{\text {eff }}=5.4 \times 10^{9} \mathrm{~mm}^{4}$
$a_{\mathrm{icc}}\left(p_{\mathrm{crm}}\right)=$ Initial plus creep deflection due to permanent loads obtained using the above modulus of elasticity
$=\frac{1}{4} \frac{M l^{2}}{E_{\mathrm{cs}} I_{\mathrm{eff}}}$
$=\frac{1}{4} \times \frac{\left(0.6 \times 21 \times 10^{7}\right)(4000)^{2}}{8.5 \times 10^{3} \times 5.4 \times 10^{9}}$
$=10.98 \mathrm{~mm}$
$a_{\text {(perm) }}=$ Short term deflection due to permanent load obtained using E_{c}
$=\frac{1}{4} \times \frac{\left(0.6 \times 21 \times 10^{7}\right)(4000)^{2}}{22.1 \times 10^{3} \times 3.204 \times 10^{9}}$
$=7.12 \mathrm{~mm}$
$\therefore a_{\text {ctperm }}=10.98-7.12=3.86$
\therefore Total deflection (long term) due to initial load, shrinkage and creep

$$
=11.86+1.90+3.86=17.62 \mathrm{~mm} .
$$

According to 22.2(a) of the Code the final deflection should not exceed span/250.
Permissible deflection $=\frac{4000}{250}=16 \mathrm{~mm}$.
The calculated deflection is only slightly greater than the permissible value and hence the section may not be revised.

Chart 88 MOMENT OF INERTIA OF T-BEAMS

Chart 89 EFFECTIVE MOMENT OF INERTIA FOR CALCULATING DEFLECTION

Chat 90 PERCENTAGE, AREA AND SPACING DF bars IN SLABS

\# UEE EFFECTIVE DEPTM OR OQERALL WHICHEVER IS USED FOR CALCULATING D

Chart 91 effective lengit of columns Frame Restrained Against Sway

β_{2} and β_{2} are the values of β at the top and bottom of the column where, $\beta=\boldsymbol{\Sigma}=\mathbf{K} K_{c}$ done for the members framing into a joint; K_{c} and K_{b} are the flexural stiffesses $\Sigma K_{\mathrm{c}}+\Sigma K_{b}$, the summation being

Chart 92 EFFECTIVE LENGTH OF COLUMNS -
Frame Without Restrint to Sway

β_{1} and β_{1} are the values of β at the top and bottom of the column, where $\beta=\frac{\Sigma K_{e}}{\delta K_{c}+\Sigma K_{b}}$, the summation being done for the members framing into a joint; $\boldsymbol{K}_{\boldsymbol{c}}$ and K_{b} are the flexural stiffnesses of column and beam respectively.

TABLE 86 MOMENT OF INERTIA - VALUES OF bd²/12 000

$d, \mathrm{~cm}$	$b, \mathrm{~cm}$								
	10	15	20	25	30	35	40	45	50
10	0.8	$1 \cdot 2$	1.7	$2 \cdot 1$	2.5	2.9	$3 \cdot 3$	$3 \cdot 7$	$4 \cdot 2$
11	$1 \cdot 1$	$1 \cdot 7$	$2 \cdot 2$	$2 \cdot 8$	$3 \cdot 3$	3.9	$4 \cdot 4$	$5 \cdot 0$	$5 \cdot 5$
12	1.4	$2 \cdot 2$	2.9	3.6	$4 \cdot 3$	$5 \cdot 0$	$5 \cdot 8$	$6 \cdot 5$	$7 \cdot 2$
13	$1 \cdot 8$	$2 \cdot 7$	3.7	46	$5 \cdot 5$	6.4	$7 \cdot 3$	8.2	$9 \cdot 2$
14	$2 \cdot 3$	$3 \cdot 4$	4.6	$5 \cdot 7$	$6 \cdot 9$	8.0	$9 \cdot 1$	$10 \cdot 3$	11.4
15	$2 \cdot 8$	$4 \cdot 2$	5.6	7.0	8.4	$9 \cdot 8$	$11 \cdot 3$	12.7	$14 \cdot 1$
16	$3 \cdot 4$	$5 \cdot 1$	$6 \cdot 8$	$8 \cdot 5$	10.2	11.9	$13 \cdot 7$	$15 \cdot 4$	$17 \cdot 1$
17	$4 \cdot 1$	6.1	$8 \cdot 2$	$10 \cdot 2$	$12 \cdot 3$	14.3	16.4	$18 \cdot 4$	20.5
18	4.9	$7 \cdot 3$	$9 \cdot 7$	$12 \cdot 1$	$14 \cdot 6$	17.0	19.4	21.9	24.3
19	5-7	8.6	11.4	$14 \cdot 3$	$17 \cdot 1$	20.0	$22 \cdot 9$	$25 \cdot 7$	28.6
20	$6 \cdot 7$	10.0	$13 \cdot 3$	16.7	20.0	23.3	$26 \cdot 7$	30.0	$33 \cdot 3$
21	$7 \cdot 7$	$11 \cdot 6$	$15 \cdot 4$	$19 \cdot 3$	$23 \cdot 2$	$27 \cdot 0$	30.9	$34 \cdot 7$	$38 \cdot 6$
22	$8 \cdot 9$	$13 \cdot 3$	17.7	22.2	26.6	31.1	$35 \cdot 5$	$39 \cdot 9$	$44 \cdot 4$
23	$10 \cdot 1$	$15 \cdot 2$	$20 \cdot 3$	25.3	$30 \cdot 4$	$35 \cdot 5$	40.6	$45 \cdot 6$	50.7
24	11.5	$17 \cdot 3$	23.0	$28 \cdot 8$	$34 \cdot 6$	$40 \cdot 3$	$46 \cdot 1$	51.8	57.6
25	13.0	19.5	26.0	32.6	$39 \cdot 1$	45.6	$52 \cdot 1$	58.6	$65 \cdot 1$
26	14.6	22.0	29.3	36.6	$43 \cdot 9$	51.3	58.6	$65 \cdot 9$	$73 \cdot 2$
27	16.4	$24 \cdot 6$	32.8	41.0	$49 \cdot 2$	57.4	$65 \cdot 6$	$73 \cdot 8$	$82 \cdot 0$
28	$18 \cdot 3$	$27 \cdot 4$	$36 \cdot 6$	$45 \cdot 7$	54.9	64.0	$73 \cdot 2$	$82 \cdot 3$	91.5
29	20.3	$30 \cdot 5$	$40 \cdot 6$	$50 \cdot 8$	61.0	71-1	$81 \cdot 3$	91.5	101.6
30	22.5	33.8	$45 \cdot 0$	$56 \cdot 3$	$67 \cdot 5$	78.8	90.0	101.3	112.5
32	$27 \cdot 3$	$41 \cdot 0$	54.6	$68 \cdot 3$	$81 \cdot 9$	$95 \cdot 6$	$109 \cdot 2$	122.9	136.5
34	$32 \cdot 8$ 38.9	$49 \cdot 1$	65.5	81.9	98.3	114.6	131.0	147.4	163.8
36	$38 \cdot 9$	58.3	$77 \cdot 8$	$97 \cdot 2$	116.6	$136 \cdot 1$	155.5	175.0	$194 \cdot 4$
38	$45 \cdot 7$	68.6	91.5	114.3	$137 \cdot 2$	160.0	182-9	205.8	228.6
40	$53 \cdot 3$	80.0	$106 \cdot 7$	$133 \cdot 3$	$160 \cdot 0$	$186 \cdot 7$	$213 \cdot 3$	$240 \cdot 0$	$266 \cdot 7$
42	61.7	92.6	123.5	154.3	$185 \cdot 2$	216.1	247.0	277.8	308.7
44	71.0	106.5	142.0	$177 \cdot 5$	$213 \cdot 0$	$248 \cdot 5$	283.9	319.4	$354 \cdot 9$
46	81.1	121.7	162.2	$202 \cdot 8$	$243 \cdot 3$	283.9	$324 \cdot 5$	365.0	$405 \cdot 6$
48	¢2.2	$138 \cdot 2$:84.3	230.4	$276 \cdot 5$	322.6	368.6	414.7	$460 \cdot 8$
	104.2	156.2	$208 \cdot 3$	$260 \cdot 4$	312.5	364.6	$416 \cdot 7$		520.8
52	117.2	$175 \cdot 8$	$234 \cdot 3$	292.9	351.5	$410 \cdot 1$	$468 \cdot 7$	$527 \cdot 3$	585.9
54	131.2	196.8	$262 \cdot 4$	328.0	$393 \cdot 7$	$459 \cdot 3$	524.9	$590 \cdot 5$	656.1
56	$146 \cdot 3$	219.5	292.7	$365 \cdot 9$	$439 \cdot 0$	512.2	$585 \cdot 4$	658.6	$731 \cdot 7$
58	$162 \cdot 6$	243.9	$325 \cdot 2$	$406 \cdot 5$	487•8	$569 \cdot 1$	650.4	731.7	813.0
60	180.0	270.0	$360 \cdot 0$	450.0	$540 \cdot 0$	$630 \cdot 0$	720.0	810.0	$900 \cdot 0$
65	228.9	$343 \cdot 3$	$457 \cdot 7$	$572 \cdot 1$	$686 \cdot 6$	801.0	$915 \cdot 4$	$1029 \cdot 8$	$1144 \cdot 3$
70	285.8	428.7	$571 \cdot 7$	714.6	857.5	$1000 \cdot 4$	$1143 \cdot 3$	$1286 \cdot 2$	$1429 \cdot 2$
75	351.6	$527 \cdot 3$	$703 \cdot 1$	$878 \cdot 9$	1054.7	$1230 \cdot 5$	$1406 \cdot 3$	$1582 \cdot 0$	1757.8
80	426.7	$640 \cdot 0$	853.3	$1066 \cdot 7$	$1280 \cdot 0$	$1493 \cdot 3$	1706.7	1920.0	$2133 \cdot 3$
85	511.8	$767 \cdot 7$	$1023 \cdot 5$	1279.4	$1535 \cdot 3$	1791.2	$2047 \cdot 1$	2303.0	2558.9
90	607.5	911.3	$1215 \cdot 0$	$1518 \cdot 8$	$1822 \cdot 5$	2126.3	$2430 \cdot 0$	$2733 \cdot 8$	$3037 \cdot 5$
95	7145	1071.7	$1429 \cdot 0$	$1786 \cdot 2$	$2143 \cdot 4$	$2500 \cdot 7$	2857•9	3215-2	$3572 \cdot 4$
100	$833 \cdot 3$	1250.0	$1666 \cdot 7$	$2083 \cdot 3$	$2500 \cdot 0$	$2916 \cdot 7$	3333-3	3750.0	4166.7

TABLE 87 MOMENT OF INERTIA OF CRACKED SECTION -
 VALUES OF $I_{r} /\left(\frac{b d^{2}}{12}\right)$

	$\mathrm{pc}^{(m-1) /\left(p_{1} m\right)} \mathrm{d}^{\prime} / d=0.05$							
$p m^{m}$	0.0	0.1	$0 \cdot 2$	0.3	0.4	0.6	0.8	1.0
1.0	0.100	0.100	$0 \cdot 100$	0.100	0.100	$0 \cdot 100$	$0 \cdot 100$	$0 \cdot 100$
$1 \cdot 5$	$0 \cdot 143$	0.144	0.144	0.144	0.144	0.145	$0 \cdot 145$	0.145
2.0	0.185	0.185	0.186	0.186	0.186	0.187	0.188	0.188
2.5	0.224	0.225	0.225	0.226	0.227	0.228	0.229	0.230
3.0	0.262	$0-263$	0.264	0.264	$0 \cdot 265$	0.267	0.269	0.270
$3 \cdot 5$	0.298	0.299	0.300	0.302	0.303	0.305	0.308	$0 \cdot 310$
4.0	0.332	0.334	0.336	0.338	0.339	0.343	0.346	$0 \cdot 348$
$4 \cdot 5$	0.366	0.368	$0 \cdot 371$	0.373	0.375	0.379	0.383	0-386
$5 \cdot 0$	0.398	0.401	0.404	0.407	0.409	0.414	0.419	$0 \cdot 424$
$5 \cdot 5$	0.430	0.433	0.437	0.440	0.443	0.449	0.455	$0 \cdot 460$
6.0	0.460	0.465	0.469	0.472	0.476	0.483	0.490	0.496
$6 \cdot 5$	0.490	0.495	0.500	0.504	0.509	0.517	0.525	0.532
70	0.519	0.525	0.530	0.535	0.540	0.550	0.559	0.567
$7 \cdot 5$	0.547	0.554	0.560	0.566	0.571	0.582	0.592	0.602
8.0	0.575	0.582	0.589	0.596	$0 \cdot 602$	0.614	0.626	0.636
$8 \cdot 5$	0.601	0.610	0.617	0.625	0.632	0.646	0.659	0.670
9.0	0.628	0.637	0.645	0.654	0.662	0.677	0.691	0.704
$9 \cdot 5$	0.653	0.663	0.673	0.682	0.691	0.708	0.723	0.738
10.0	0.678	0.689	0.700	0.710	0.720	0.738	0.755	0.771
$10 \cdot 5$	0.703	0.715	0.727	0.738	0.748	0.769	0.787	0.804
11.0	0.727	0.740	0.753	0.765	0.777	0.798	0.818	0.837
$11 \cdot 5$	0.750	0.764	0.778	0.792	0.804	0.828	0.850	0.869
12.0	0.773	0.789	0.804	0.818	0.832	0.857	0.880	0.902
12.5	0.795	0.812	0.829	0.844	0.859	0.886	0.911	0.934
13.0	0.818	0.836	0.853	0.870	0.885	0.915	0.942	0.966
$13 \cdot 5$	0.839	0.859	0.877	0.895	0.912	0.943	0.972	0.998
140	0.860	0.881	0.901	0.920	0.938	0.972	1.002	1.030
14.5	0.881	0.904	0.925	0.945	0.964	1.000	1.032	1.061
150	0.912	0.926	0.948	0.969	0.990	1.027	1.062	1.093
$15 \cdot 5$	$0 \cdot 922$	0.947	0.971	0.994	1.015	1.055	1.091	$1 \cdot 124$
16.0	0.942	0.968	0.994	1.018	1.040	1.083	$1 \cdot 121$	$1 \cdot 155$
17.0	0.980	1.010	1.038	1.065	1.090	$1 \cdot 137$	$1 \cdot 179$	$1 \cdot 217$
18.0	1.018	1.051	1.082	$1 \cdot 111$	1.139	1.191	1.237	1.278
19.0	1.054	1.090	$1 \cdot 125$	1.157	1.188	1.244	1.294	1.340
20.0	1.089	$1 \cdot 129$	1-166	1-202	1.235	1.296	1.351	1.400
21.0	$1 \cdot 123$	1-167	1.207	1.246	1.282	$1 \cdot 348$	1.408	$1 \cdot 461$
22.0	1.156	1.203	1.248	1.289	1.328	1.400	1.464	$1 \cdot 521$
23.0	$1 \cdot 188$	1.239	1.287	$1 \cdot 332$	$1 \cdot 374$	1.451	1.519	1.581
24.0	1.220	$1 \cdot 274$	1.326	1.374	1.419	1.502	1.575	1.640
25.0	$1 \cdot 250$	$1 \cdot 309$	$1 \cdot 364$	$1 \cdot 415$	$1 \cdot 464$	$1 \cdot 552$	1.630	1.699
26.0	1.280	1.342	1.401	1.456	1.508	1.602	1.685	1.758
27.0	1.308	$1 \cdot 376$	1.438	1.497	1.552	1.651	1.739	1.817
28.0	1.337	1.408	1.475	1.537	1.595	$1 \cdot 701$	1.794	1.876
29.0	1.364	1.440	1.510	1.576	1.638	1.750	1.848	1.934
30.0	1.391	1.471	1.546	1.615	1.681	1.798	1.902	1.993

TABLE 88 MOMENT OF INERTIA OF CRACKED SECTION -
VALUES OF $I_{r}\left(\frac{b d^{3}}{12}\right)$

	$D_{c}(m-1) /\left(\rho_{t} m\right)$						$d^{\prime} / d=0 \cdot 10$	
$p i m$	0.0	$0 \cdot 1$	$0-2$	0.3	0.4	0.6	0.8	$1 \cdot 0$
1.0	$0 \cdot 100$	$0 \cdot 100$	0.100	$0 \cdot 100$	$0 \cdot 100$	0.100	0.100	$0 \cdot 100$
1.5	0.143	0.143	0.144	0.144	0.144	0.144	0.144	0.144
2.0	0.185	0.185	0.185	0.185	0.185	0.186	O-186	$0 \cdot 186$
2.5	0.224	0.224	0.225	0.225	0.225	0.226	0.226	0.227
3.0	0.262	0.262	0-263	0.263	0.263	0.264	0.265	0.266
3.5	$0 \cdot 298$	0.298	0.299	0.300	0.300	0.302	0.303	0.304
40	0.332	0.333	0.334	0.335	0.336	0.338	0.340	0.341
$4 \cdot 5$	0.366	0.367	0.369	0.370	0.371	0.373	0.376	0.378
5.0	0.398	0.400	0-402	0.403	0.405	0.408	0.411	0.413
$5 \cdot 5$	0.430	0.432	0.434	0.436	0.438	0.442	0.445	0.448
6.0	0.460	0.463	0.466	0.468	0.470	0.475	0.479	0.483
6.5	0.490	0.493	0.496	0.499	$0 \cdot 502$	0.507	0.512	0.517
$7 \cdot 0$	0.519	0.523	0.526	0.530	$0 \cdot 533$	0.539	0.545	0.550
$7 \cdot 5$	0.547	0.551	0.556	0.560	0.563	0.571	0.577	0.583
8.0	0.575	0.580	0.584	0.589	0.593	0.601	0.609	0.616
8.5	0.601	0.607	0.612	0.618	0.622	0.632	0.640	0.648
$9 \cdot 0$	0.628	0.634	0.640	0.646	0.651	$0 \cdot 662$	0.671	0.680
$9 \cdot 5$	0.653	0.660	0.667	0.673	0.680	0.691	0.702	0.712
10.0	0.678	0.686	0.693	0.701	0.708	0.720	0.732	0.743
10.5	0.703	0.711	0.720	0.727	0.735	0.749	0.762	0.774
11.0	0.727	0.736	0.745	0.754	0.762	0.778	0.792	0.805
11.5	0.750	0.760	0.770	0.780	0.789	0.806	0.822	0.836
12.0	0.773	0.784	0.795	0.805	0.815	0.834	$0 \cdot 851$	0.866
12.5	0.795	0.808	0.820	0.831	0.841	0.861	$0 \cdot 880$	0.896
13.0	0.818	0.831	0.844	0.856	0.867	0.889	0.908	0.926
13.5	0.839	0.854	0.867	0.880	0.893	0.916	0.937	0.956
14.0	0.860	0.876	0.891	0.905	0.918	0.943	0.965	0.986
14.5	0.881	0.898	0-914	0.929	0.943	0.969	0.993	1015
150	0.902	0.920	0.936	0.952	0.968	0.996	1.021	1.044
$15 \cdot 5$	0.922	0.941	0.959	0.976	0.992	1.022	1.049	1.074
16.0	0.942	0.962	0.981	0.999	1.016	1.048	1077	$1 \cdot 103$
17.0	0.980	1.003	1.024	1045	1.064	1.099	1.131	$1 \cdot 160$
18.0	1.018	1.043	1.067	1.089	1.111	1.150	$1 \cdot 185$	1-217
19.0	1.054	1.082	$1 \cdot 108$	$1 \cdot 133$	$1 \cdot 157$	$1 \cdot 200$	1.239	1.274
20.0	1.089	$1 \cdot 120$	$1 \cdot 149$	1.176	$1 \cdot 202$	1.249	$1 \cdot 292$	1.330
21.0	1.123	1.157	1-189	1.218	1.247	1.298	1.344	$1 \cdot 386$
22.0	$1 \cdot 156$	1-193	$1 \cdot 227$	$1 \cdot 260$	$1 \cdot 291$	1.347	1.396	1.441
23.0	1.188	1.228	$1 \cdot 266$	$1 \cdot 301$	$1 \cdot 334$	1.394	1.448	1.496
24.0	1.220	1.263	1-303	$1 \cdot 341$	1.377	1.442	1.500	1.551
25.0	$1 \cdot 250$	1-296	$1 \cdot 340$	1.381	$1 \cdot 419$	1.489	1.551	1.606
26.0	1.280	1.329	1.376	1.420	1.461	1.535	1.601	1.660
$27 \cdot 0$	1.308	1.362	1.412	1.458	1.502	1.582	1.652	1.714
28.0	1.337	1.394	1.447	1.496	1.543	1.627	$1 \cdot 702$	1.768
29.0	1.364	1.425	1.481	1.534	1.583	1.673	1.752	1.821
30.0	$1 \cdot 391$	$1 \cdot 455$	$1 \cdot 515$	1.571	1.623	$1 \cdot 718$	1.801	1.875

TABLE 89 MOMENT OF INERTIA OF CRACKED SECTION -
VALUES OF $I_{T}\left(\frac{b d^{3}}{12}\right)$
$d^{\prime} / d=0.15$

$p m^{m}$	$\mathrm{Pc}^{(m-1) /\left(P_{t} m\right)}$							
	0.0	0.1	0.2	0.3	0.4	0.6	0.8	1.0
1.0	$0 \cdot 100$	$0 \cdot 100$	$0 \cdot 100$	0.100	0.100	0.100	$0 \cdot 100$	$0 \cdot 100$
1.5	$0 \cdot 143$	0.143	0.143	0.143	$0 \cdot 143$	$0 \cdot 143$	0.143	0.143
2.0	$0 \cdot 185$	0.185	$0 \cdot 185$	$0 \cdot 185$	$0 \cdot 185$	0.185	0.185	0:185
2.5	0.224	0.224	0.224	$0 \cdot 224$	0.224	0.224	0.225	0.225
$3 \cdot 0$	$0 \cdot 262$	$0 \cdot 262$	0.262	$0 \cdot 262$	0.262	0.262	0.263	0.263
$3 \cdot 5$	0.298	0.298	0.298	0.298	0.299	0.299	$0 \cdot 300$	$0 \cdot 300$
4.0	0.332	0.333	0.333	0.334	0.334	0.335	0.336	0.336
$4 \cdot 5$	$0 \cdot 366$	0.367	$0 \cdot 367$	0.368	0.368	0.369	0.371	0.372
50	$0 \cdot 398$	0.399	0.400	$0 \cdot 401$	$0 \cdot 402$	0.403	$0 \cdot 405$	0.406
$5 \cdot 5$	0.430	0.431	$0 \cdot 432$	0.433	0.434	0.436	0.438	0.440
6.0	0.460	0.462	0.463	0.465	0.466	0.468	0.471	0.473
6.5	0.490	0.492	0.494	0.495	0.497	0.500	0.503	0.505
$7 \cdot 0$	0.519	0.521	0.523	0.525	0.527	0.531	0.534	0.537
$7 \cdot 5$	0.547	0.550	0.552	0.555	0.557	0.561	0.565	0.569
8.0	0.575	0.578	0.581	0.583	$0 \cdot 586$	0.591	0.596	0.600
8.5	0.601	0.605	0.608	0.611	0.614	$0 \cdot 620$	0.626	0.631
9.0	0.628	0.632	0.635	0.639	0.643	0.649	0.655	0.661
9.5	0.653	0.658	0.662	0.666	0.670	0.678	0.685	0.691
10.0	0.678	0.683	0.688	0.693	0.697	0.706	0.713	0.721
$10 \cdot 5$	0.703	0.708	0.714	0.719	0.724	0.733	0.742	0.750
11.0	0.727	0.733	0.739	0.745	0.750	0.761	0.770	0.779
11.5	0.750	0.757	0.764	0.770	0.776	0.788	0.798	0.808
12.0	0.773	0.781	0.788	0.795	0.802	0.814	0.826	0.836
12.5	0.795	0.804	0.812	0.820	0.827	0.841	0.853	0.865
$13 \cdot 0$	0.818	0.827	0.836	0.844	0.852	0.867	0.880	0.893
13.5	0.839	0.849	0.859	0.868	0.876	0.893	0.907	0.921
14.0	$0 \cdot 860$	0.871	0.882	0.891	0.901	0.918	0.934	0.948
14.5	0.881	0.893	0.904	0.915	0.925	0.943	0.960	0.976
15.0	0.902	0.914	0.926	0.938	0.949	0.969	0.987	1.003
$15 \cdot 5$	0.922	0.935	0.948	0.960	0.972	0.993	1.013	1.030
16.0	0.942	0.956	0.970	0.983	0.995	1.018	1.039	1.057
17.0	0.980	0.997	1.012	1.027	1.041	1.067	1.090	$1 \cdot 111$
18.0	1.018	1.036	1.054	1.070	1.086	$1 \cdot 115$	1.141	1.164
19.0	1.054	1.075	1.094	$1 \cdot 112$	1-130	1-162	$1 \cdot 191$	$1 \cdot 216$
20.0	1.089	$1 \cdot 112$	1.134	$1 \cdot 154$	1.173	1.208	$1 \cdot 240$	$1 \cdot 268$
21.0	$1 \cdot 123$	$1 \cdot 148$	$1 \cdot 172$	$1 \cdot 194$	1.216	1-254	1.289	$1 \cdot 320$
220	$1 \cdot 156$	$1 \cdot 184$	1.210	1.234	1.257	1.300	1.337	1.371
23.0	$1 \cdot 188$	1.219	1.247	1.274	1.299	1.345	1.385	1.422
24.0	$1 \cdot 220$	1.252	1.283	1.312	1.339	1.389	1.433	1.473
25.0	1.250	1.286	$1 \cdot 319$	1.350	1.379	1.433	1.480	1.523
26.0	1.280	1.318	1.354	1.387	1.419	1.476	1.527	1.573
27.0	1.308	1.350	$1 \cdot 388$	1.424	1.458	1.520	1.574	1.622
28.0	1.337	$1 \cdot 381$	1.422	1.461	1.497	1.562	1.620	1.672
29.0	$1 \cdot 364$	1.411	1.455	1.496	1.535	1.605	1.666	1.721
30.0	1-391	1.441	1.488	1.532	1.573	1.647	1.712	1.770

TABLE 90 MOMENT OF INERTIA OF CRACKED SECTION -
VALUES OF $I_{\mathrm{r}} /\left(\frac{b d^{2}}{12}\right)$
$d^{\prime} / d=0.20$

$p m^{\prime \prime}$	$p \mathrm{c}(\mathrm{m}-1) /(\mathrm{ptm})$							
	00	$0-1$	$0 \cdot 2$	0.3	0.4	0.6	0.8	10
10	$0 \cdot 100$	0.100	$0 \cdot 100$	$0 \cdot 100$	$0 \cdot 100$	0.100	0.100	$0 \cdot 100$
$1 \cdot 5$	0.143	0143	$0 \cdot 143$	0.143	0.144	0.144	0.144	0.144
20	0.185	0.185	0.185	0.185	0.185	O-185	$0 \cdot 185$	0.185
$2 \cdot 5$	0.224	0224	$0-224$	0.224	0.224	0.224	0.224	0.224
3.0	0.262	0.262	0-262	$0 \cdot 262$	0.262	0.262	0.262	$0 \cdot 262$
3.5	0.298	0.298	0.298	0.298	0.298	0.298	0.298	0.298
40	0.332	0.333	0.333	0.333	0.333	0.333	$0 \cdot 333$	0.333
4.5	0.366	0.366	0.366	0.367	0.367	0.367	0-367	0.368
50	0.398	0.399	0-399	0.399	0.400	0.400	0.401	0.401
$5 \cdot 5$	0.430	0.430	0.431	0.431	0.432	0.432	0.433	0.434
6.0	0.460	0.461	0.462	0.462	0.463	0.464	0.465	0.466
$6 \cdot 5$	0.490	0.491	0.492	0.492	0.493	0.495	0.496	0.497
70	0.519	0.520	0.521	0.522	0.523	0.525	0.526	0.528
$7 \cdot 5$	$0-547$	0.548	0.550	0.551	0.552	0.554	0.556	0.558
8.0	0.575	0.576	$0-578$	0.579	0.580	0-583	0.586	0.588
$8 \cdot 5$	0.601	0.603	0.605	0.607	0.608	0.612	0.614	0.617
9-0	0.628	0.630	0.632	0.634	0.636	0.639	0.643	0.646
9.5	0.653	0.656	0.658	0.660	0.663	0.667	0.671	0.675
10.0	0.678	0.681	0.684	0.687	0.689	0.694	0.699	0.703
10.5	0.703	0-706	0.709	0.712	0.715	0.721	0.726	0.731
11.0	0.727	0.730	0.734 0.758	0.737 0.762	0.741 0.766	0.747	0.753 0.779	0.758
11.5 12.0	0.750 0.773	0.754 0.778	0.758 0.782	0.762 0.787	0.766 0.791	0.773 0.799	0.779 0.806	0.785 0.812
12.0 12.5	0.773 0.795	0778 0801	0.782 0.806	0.787 0.811	0.815	0.799 0.824	0.806 0.832	0.812 0.839
13.0	$0-818$	$0-823$	0.829	0.834	0.839	0.849	0.857	0.865
$13 \cdot 5$	$0-839$	0.846	$0-852$	0.858	0.863	0.874	0.883	0.892
14.0	0.860	0.867	0.874	0.881	0.887	0.898	0-908	0.918
14.5	0.881	0889	0.896	0.903	0.910	0.922	0.933	0.943
15.0	0-902	0.910	0.918	0.926	0.933	0.946	0.958	0.969
$15 \cdot 5$	0-922	0.931	0-940	0.948	0.955	0.970	0.983	0.994
16.0	0.942	0.952	0.961	0-969	0.978	0.993	1.007	1.020
17.0	$0-980$	0.992	1.002	1.012	1.022	1.039	1.055	1.070
18.0	1018	1.031	1.043	1.054	1.065	1.085	$1 \cdot 103$	1.119
19.0	1.054	1.068	1.082	1.095	$1 \cdot 107$	1-129	$1 \cdot 150$	1-168
20.0	1.089	$1 \cdot 105$	$1 \cdot 120$	$1 \cdot 135$	$1 \cdot 148$	$1 \cdot 173$	1.196	1:216
21.0	$1 \cdot 123$	$1 \cdot 141$	$1 \cdot 158$	$1 \cdot 174$	1.189	1.217	1.241	1.264
22.0	$1 \cdot 156$	$1 \cdot 176$	1.195	$1 \cdot 212$	1.229	1.259	1.287	1.311
23.0	1.188	1.210	1.231	1.250	$1 \cdot 268$	1.302	1.331	1.358
24.0	$1 \cdot 220$	1.244	1.266	1-287	$1 \cdot 307$	$1 \cdot 343$	$1 \cdot 376$	$1 \cdot 405$
25.0	1.250	1-276	$1 \cdot 301$	$1 \cdot 324$	$1 \cdot 345$	$1 \cdot 384$	$1 \cdot 419$	1.451
26.0	1.280	1.308	1.334	1.359	1.383	1.425	1.463	1.497
270	$1 \cdot 308$	$1 \cdot 339$	1.368	1.395	1.420	1.465	1.506	1.542
28.0	1.337	$1 \cdot 370$	1.400	1.429	1.456	1.505	1.549	1.587
29.0	1.364	1.399	1.433	1.463	1.492	1.545	1.591	1.632
30.0	1.391	1.429	$1 \cdot 464$	$1 \cdot 497$	1.528	1.584	1.633	1.677

TABLE 91 DEPTH OF NEUTRAL AXES - VALUES OF $\boldsymbol{x} / \boldsymbol{d}$ BY ELASTIC THEORY
$d^{\prime} / d=0.05$

Ptm	$p_{0}(m-1) /\left(p_{t} m\right)$							
	0.0	$0 \cdot 1$	0.2	0.3	0.4	0.6	0.8	1.0
1.0	$0 \cdot 132$	0.131	0.131	0.130	0.130	$0 \cdot 128$	0-127	0.126
1.5	0.159	0.158	0.157	$0 \cdot 156$	0.155	$0 \cdot 153$	0.152	0.150
2.0	$0 \cdot 181$	$0 \cdot 180$	$0 \cdot 178$	0.177	$0 \cdot 176$	$0 \cdot 173$	0.171	$0 \cdot 169$
$2 \cdot 5$	0.200	0.198	0.197	0.195	$0 \cdot 194$	$0 \cdot 190$	$0 \cdot 187$	0.185
3.0	0.217	0.215	0.213	0.211	0.209	0.205	$0 \cdot 202$	0.198
$3 \cdot 5$	0.232	0.230	0.227	0.225	0.223	0.218	0.214	0.210
$4 \cdot 0$	0.246	0.243	0.240	0.238	0.235	0.230	0.225	0.221
$4 \cdot 5$	0.258	0.255	0.252	0.249	0.246	0.241	0.235	0.230
$5 \cdot 0$	0.270	0.267	0.263	0.260	0.257	0.251	0.245	0.239
$5 \cdot 5$	0.281	0.277	0.274	0.270	0.267	0.260	0.253	0.247
6.0	0-292	0.287	0.284	0.280	0.276	0.268	0.261	0.255
$6 \cdot 5$	$0 \cdot 301$	0.297	0.293	0:288	0.284	0.276	0.269	0.262
7.0	0.311	0.306	0.301	0.297	0.292	0.284	0.276	0.268
7.5	0.319	0.314	0.309	$0 \cdot 305$	0.300	0.291	0.282	0.274
8.0	0.328	0.323	0.317	0.312	$0 \cdot 307$	0.298	0.289	0.280
$8 \cdot 5$	0.336	0.330	0.325	0.319	0.314	0.304	0-294	0.285
9.0	0.344	0.338	0.332	0-326	0:321	0.310	$0 \cdot 300$	0.291
$9 \cdot 5$	0.351	0.345	0.339	0.333	0.327	0.316	0-305	0.295
10.0	0.358	0.352	0.345	0-339	0.333	0.321	0.310	0.300
10.5	0.365	0.358	0.351	0.345	0.339	0-326	0.315	0.304
11.0	0.372	0.365	0.358	0.351	0.344	$0 \cdot 332$	$0 \cdot 320$	0.309
$11 \cdot 5$	0.378	0.371	0.363	0.356	0.349	0.336	$0 \cdot 324$	0.313
12.0	0.384	$0 \cdot 377$	0.369	0.362	0.355	0.341	0.328	0.316
12.5	$0 \cdot 390$	0-382	0.374	0.367	0.359	0.345	0.332	$0 \cdot 320$
13.0	$0-396$	0.388	0.380	0.372	$0 \cdot 364$	$0 \cdot 350$	0.336	0.324
$13 \cdot 5$	0.402	0.393	0.385	0.377	0.369	0.354	0.340	0.327
14.0	0.407	0.398	0.390	0.381	0.373	0.358	0.344	0.330
$14 \cdot 5$	0.413	0.403	0.394	0.386	0.378	0.362	0.347	0.333
$15 \cdot 0$	0.418	0.408	0.399	0.390	0.382	0.365	$0 \cdot 350$	0.336
15-5	0.423	0.413	0.404	0.395	0.386	0.369	0.354	0.339
16.0	0.428	0.418	0.408	$0 \cdot 399$	0.390	0.373	0.357	$0-342$
17.0	0.437	$0 \cdot 427$	0.416	0.407	0.397	0.379	$0-363$	$0 \cdot 347$
18.0	0.446	0.435	0.425	0.414	0.404	0.386	0.368	0.352
19.0	0.455	0.443	0.432	0.421	0.411	0.392	0.374	0.357
200	0.463	0.451	0.439	0.428	0.417	0-397	0.379	0.362
21.0	0.471	0.459	0.446	0.435	0.424	0.403	0.383	0.366
22.0	0.479	0.466	0.453	0.441	0.429	0.408	0.388	0.370
23.0	0.486	0.472	$0-459$	0.447	0.435	0.413	0.392	0.373
24.0	0.493	0.479	$0 \cdot 465$	0.453	0.440	0-417	0.396	0.377
25.0	0.500	0.485	0.471	0.458	0.445	0.422	0.400	0.380
26.0	0.507	0.491	0.477	0.463	0.450	0.426	0.404	0.384
$27 \cdot 0$	0.513	0.497	0.482	0.468	$0 \cdot 455$	0.430	0.407	0.387
28.0	0.519	0.503	0.488	$0 \cdot 473$	0.459	0.434	0.411	0.390
29.0	0.525	0.508	0.493	0.478	0.464	0.437	0.414	0.392
30.0	0.531	0.514	0.498	0.482	0.468	0.441	0.417	0.395

TABLE 92 DEPTH OF NEUTRAL AXIS - VALUES OF x / d BY ELASTIC THEORY

$d^{\prime} / d=0 \cdot 10$

$p_{1} m$	$m_{c}(m-1) /\left(p_{t} m\right)$							
	0.0	0.1	0.2	0.3	0.4	0.6	0.8	$1 \cdot 0$
$1 \cdot 0$	0.132	0.132	0.131	0.131	0.131	0.130	0.130	0.130
$1 \cdot 5$	0.159	0.158	0-158	$0 \cdot 157$	0.157	0.156	0.155	0.154
20	0.181	0.180	0.179	$0 \cdot 179$	0.178	$0 \cdot 176$	0.175	0.174
$2 \cdot 5$	0.200	0.199	0.198	0.197	0.196	0.194	$0 \cdot 192$	$0 \cdot 190$
3.0	0.217	0.215	0.214	0.213	0.211	0.209	0.206	$0 \cdot 204$
$3 \cdot 5$	0.232	0.230	0.228	0-227	0.225	0.222	0.219	0.216
4.0	0.246	0.244	0.242	0.240	0.238	0.234	0.231	0.227
$4 \cdot 5$	0.258	0.256	0.254	0.252	0.249	0.245	0.241	0.237
5.0	0.270	0.268	0.265	0.262	0.260	0.255	0.251	0.246
$5 \cdot 5$	0.281	0.278	0.275	0.273	$0 \cdot 270$	0-265	0.260	0.255
6.0	0.292	0.288	0.285	0.282	0.279	0.273	0.268	0.263
$6 \cdot 5$	$0 \cdot 301$	0.298	0.294	0.291	0.288	0.282	0.276	0.270
$7 \cdot 0$	0.311	$0 \cdot 307$	$0 \cdot 303$	0.299	0.296	0.289	0.283	0.277
$7 \cdot 5$	0.319	0.315	0.311	0.307	0.304	0.296	0-290	0-283
$8 \cdot 0$	0.328	0.324	0.319	0.315	0.311	0.303	0.296	$0 \cdot 289$
$8 \cdot 5$	0.336	0.331	0.327	$0 \cdot 322$	0.318	0.310	0.302	0.295
9.0	0.344	0.339	0.334	0.329	0.325	0.316	0.308	0.300
9.5	0.351	0.346	$0 \cdot 341$	0.336	0.331	$0 \cdot 322$	0.313	$0 \cdot 305$
10.0	0.358	0.353	0.347	$0 \cdot 342$	$0 \cdot 337$	$0 \cdot 327$	0.318	$0 \cdot 310$
10.5	0.365	0.359	0.354	0.348	0.343	0.333	0.323	0.314
11.0	$0 \cdot 372$	0.366	0.360	0.354	0.349	0.338	0.328	$0 \cdot 319$
11.5	0.378	0.372	0.366	0.360	0.354	0.343	0.333	0.323
12.0	0.384	0.378	0.371	0.365	0.359	0.348	0.337	$0 \cdot 327$
$12 \cdot 5$	0.390	0.383	0.377	0.370	0.364	0.352	0.341	0.331
13.0	0.396	0.389	0.382	0.375	0.369	0.357	0.345	$0 \cdot 335$
$13 \cdot 5$	0.402	0.394	0.387	0.380	0.374	0.361	0.349	0.338
14.0	0.407	0.400	0.392	0.385	$0 \cdot 378$	$0 \cdot 365$	0.353	0.342
14.5	0.413	0.405	0-397	0.390	0.382	0.369	0.357	0.345
$15 \cdot 0$	0.418	0.410	0.402	0.394	0.387	0.373	0.360	0.348
15.5	0.423	0.414	0.406	0.398	0.391	0.377	0.363	0.351
16.0	0.428	0.419	0.411	0.403	0.395	0.380	0.367	0.354
$17 \cdot 0$	0.437	0.428	0.419	0.411	0.403	0.387	0.373	$0 \cdot 360$
18.0	0.446	0.437	0.427	0.418	0.410	0.394	0.379	0.365
19.0	0.455	0.445	0.435	0.426	0.417	0.400	0.384	0.370
20.0	$0 \cdot 463$	0.453	0.442	0.433	0.423	0.406	$0 \cdot 389$	0.375
21.0	0.471	0.460	0.449	0.439	0.429	0.411	0.394	0.379
22.0	0.479	0.467	0.456	0.445	0.435	0.416	0.399	$0 \cdot 383$
23.0	0.486	0.474	$0 \cdot 462$	$0 \cdot 451$	0.441	0.421	0.403	$0 \cdot 387$
24.0	0.493	0.481	0.469	0.457	0.446	0.426	$0 \cdot 408$	0.391
25.0	0.500	0.487	$0-475$	0.463	0.452	0.431	0.412	0.394
26.0	0.507	0.493	0.480	0.468	0.457	0.435	0.416	0.398
27.0	0.513	0.499	0.486	0.473	0.461	0.439	0.419	0.401
28.0	0.519	0.505	0.491	0.478	$0 \cdot 466$	0.443	0.423	0.404
29.0	0.525	0.510	0.496	0.483	0.470	0.447	0.426	0.407
30-0	0-531	0.516	0.501	0.488	0.475	0.451	0.429	$0 \cdot 410$

TABLE 93 DEPTH OF NEUTRAL AXIS - VALUES OF x / d
BY ELASTIC THEORY
$d^{\prime} / d=0.15$

$p_{\mathrm{t}} \boldsymbol{m}$	$p_{c}(m-1) /\left(p_{t} m\right)$							
	0.0	0.1	0.2	0.3	0.4	0.6	0.8	1.0
1.0	0.132	$0 \cdot 132$	0.132	0.132	0.132	$0 \cdot 133$	0.133	0.133
1.5	0.159	0.159	$0 \cdot 159$	0.159	0.159	0.158	0.158	$0 \cdot 158$
2.0	0.181	0.181	$0 \cdot 180$	$0 \cdot 180$	0.180	0.179	$0 \cdot 179$	0.178
2.5	0-200	0.199	0.199	0.198	$0 \cdot 198$	0.197	0.196	0.195
3.0	$0 \cdot 217$	0.216	$0 \cdot 215$	0.214	0.214	0.212	0.211	0-209
3.5	0.232	0.231	0.230	0.229	0.228	0.226	0.224	0.222
4.0	0.246	0.244	0.243	0.242	0.241	0.238	0.236	0.234
$4 \cdot 5$	0.258	0.257	0.255	0.254	0.252	0.249	0.247	0.244
$5 \cdot 0$	0.270	0.268	0.266	0.265	0.263	0.260	0.257	0.254
$5 \cdot 5$	0.281	0.279	0.277	0.275	0.273	0.269	0.266	0.262
$6 \cdot 0$	0.292	0.289	0.287	0.285	$0 \cdot 282$	0.278	0.274	0.270
6.5	0.301	0.299	0.296	0.294	$0 \cdot 291$	0.287	0.282	$0 \cdot 278$
$7 \cdot 0$	0.311	$0 \cdot 308$	$0 \cdot 305$	0.302	0.299	0.294	0.290	0.285
$7 \cdot 5$	0.319	0.316	0.313	0.310	0.307	0.302	0.297	0.292
8.0	0.328	0.324	$0 \cdot 321$	$0 \cdot 318$	0.315	$0 \cdot 309$	0.303	0.298
8.5	0.336	0.332	0.329	$0 \cdot 325$	0.322	0.315	0.309	$0 \cdot 304$
9.0	0.344	$0 \cdot 340$	0.336	$0 \cdot 332$	$0 \cdot 329$	$0 \cdot 322$	0.315	$0 \cdot 309$
9.5	0.351	0.347	0.343	0.339	$0 \cdot 335$	0.328	$0 \cdot 321$	0.315
10.0	0.358	0.354	0.349	0.345	0.341	0.334	0.326	0.320
$10 \cdot 5$.	0.365	$0 \cdot 360$	0.356	0.351	0.347	0.339	0.332	$0 \cdot 324$
11.0	0.372	0.367	0.362	0.357	0.353	0.344	0.336	$0 \cdot 329$
11.5	0.378	0.373	$0 \cdot 368$	0.363	0.358	0.349	0.341	0.333
12.0	0.384	0.379	0.374	0.369	0.364	0.354	$0 \cdot 346$	0.338
$12 \cdot 5$	0.390	0.385	0.379	0.374	0.369	0.359	0.350	$0 \cdot 342$
13.0	0.396	0.390	0.384	0.379	0.374	0.364	0.354	0.345
$13 \cdot 5$	$0 \cdot 402$	0.396	0.390	0.384	0.378	$0 \cdot 368$	0.358	0.349
14.0	0.407	0.401	0.395	0.389	0.383	$0 \cdot 372$	0.362	$0 \cdot 353$
$14 \cdot 5$	0.413	0.406	$0 \cdot 400$	0.393	0.387	0.376	0.366	0.356
15.0	$0 \cdot 418$	0.411	0.404	$0 \cdot 398$	0.392	$0 \cdot 380$	0.369	$0 \cdot 360$
$15 \cdot 5$	$0 \cdot 423$	$0 \cdot 416$	0.409	$0 \cdot 402$	$0 \cdot 396$	$0 \cdot 384$	$0 \cdot 373$	$0 \cdot 363$
16.0	0.428	0.420	0.413	0.407	0.400	0.388	0.376	0.366
17.0	0.437	0.429	0.422	0.415	0.408	0.395	0.383	0.372
18.0	0.446	0.438	0.430	$0 \cdot 422$	0.415	0.401	0.389	0.377
19.0	0.455	0.446	0.438	0.430	0.422	0.408	0.395	$0 \cdot 382$
20.0	0.463	0.454	0.445	0.437	0.429	0.414	$0 \cdot 400$	$0 \cdot 387$
21.0	0.471	0.462	0.452	0.444	0.435	0.419	0.405	0.392
22.0	0.479	0.469	0.459	0.450	0.441	0.425	0.410	0.396
23.0	0.486	0.476	0.466	0.456	0.447	0.430	0.415	$0 \cdot 401$
24.0	0.493	0.482	0.472	$0 \cdot 462$	0.452	0.435	0.419	0.405
25.0	0.500	0.489	0.478	0.468	0.458	0.440	0.423	$0 \cdot 408$
26.0	0.507	0.495	0.484	0.473	0.463	0.444	0.427	0.412
27.0	0.513	0.501	0.489	0.478	0.468	0.448	0.431	0.415
28.0	0.519	0.506	0.494	0.483	0.472	0.453	0.435	$0 \cdot 419$
29.0	0.525	0.512	0.500	0.488	0.477	0.457	0.438	$0 \cdot 422$
30.0	0.531	0.517	0.505	0.493	0.481	0.460	0.442	0.425

TABLE 94 DEPTH OF NEUTRAL AXIS - VALUES OF $\boldsymbol{x} / \boldsymbol{d}$ BY ELASTIC THEORY
$d^{\prime} / d=0.20$

$p_{1} m$	$p_{\mathrm{c}}(m-1) /(p \mathrm{~m})$							
	$\bigcirc 0.0$	0.1	0.2	0.3	0.4	0.6	0.8	1.0
1.0	0.132	$0 \cdot 132$	0.133	0.133	0.134	0.135	0.135	0.136
$1 \cdot 5$	0.159	0.159	$0 \cdot 160$	0.160	$0 \cdot 160$	0.161	$0 \cdot 161$	$0 \cdot 162$
2.0	$0 \cdot 181$	0.181	$0 \cdot 181$	$0 \cdot 182$	$0 \cdot 182$	0.182	0.182	$0 \cdot 183$
$2 \cdot 5$	0.200	0.200	$0 \cdot 200$	0.200	0.200	0.200	$0 \cdot 200$	$0 \cdot 200$
$3 \cdot 0$	0.217	0.217	0.216	0.216	0.216	0.216	0.215	0.215
$3 \cdot 5$	0.232	0.231	0.231	0.231	0.230	0.230	0.229	0.228
$4 \cdot 0$	0.246	0.245	0.244	0.244	0.243	0.242	0.241	0.240
$4 \cdot 5$	$0 \cdot 258$	0.258	0.257	0.256	0.255	0.254	0.252	0.251
$5 \cdot 0$	0.270	0.269	0.268	0.267	0.266	0.264	0.262	0.261
$5 \cdot 5$	$0 \cdot 281$	0.280	0.279	$0 \cdot 277$	0.276	0.274	0.272	0.270
6.0	0.292	$0 \cdot 290$	0.289	$0 \cdot 287$	$0 \cdot 286$	0.283	0.280	0.278
$6 \cdot 5$	$0 \cdot 301$	$0 \cdot 300$	0.298	$0 \cdot 29$	0.295	0.291	0.289	0.286
7.0	$0 \cdot 311$	0.309	0.307	0.305	0.303	0.300	0.296	$0 \cdot 293$
$7 \cdot 5$	$0 \cdot 319$	0.317	0.315	0.313	$0 \cdot 311$	0.307	0.303	$0 \cdot 300$
8.0	$0 \cdot 328$	0.325	0.323	$0 \cdot 321$	$0 \cdot 319$	0.314	0.310	0.306
8.5	0.336	0.333	0.331	0.328	0.326	$0 \cdot 321$	0.317	0.313
9.0	0.344	0.341	0.338	0.335	0.333	0.328	0.323	0.318
$9 \cdot 5$	0.351	0.348	0.345	0.342	0.339	0.334	0.329	0.324
$10 \cdot 0$	$0 \cdot 358$	0.355	0.352	0.348	0.345	0.340	0.334	0.329
$10 \cdot 5$	$0 \cdot 365$	0.362	0.358	0.355	$0 \cdot 351$	0.345	$0 \cdot 340$	$0 \cdot 334$
11.0	0.372	0.368	0.364	0.361	0.357	0.351	0.345	0.339
11.5	0.378	0.374	0.370	0.366	0.363	0.356	0.349	0.343
12.0	$0 \cdot 384$	0.380	0.376	0.372	0.368	0.361	0.354	0.348
$12 \cdot 5$	0.390	0.386	0.382	0.377	0.373	0.366	0.359	0.352
13.0	0.396	0.391	0.387	0.383	$0 \cdot 378$	0.370	0.363	0.356
13.5	0.402	0.397	0.392	0.388	0.383	0.375	0.367	0.360
14.0	0.407	0.402	$0 \cdot 397$	$0 \cdot 392$	0.388	0.379	0.371	0.364
14.5	0.413	0.407	0.402	0.397	0.392	0.383	0.375	0.367
15.0	0.418	$0 \cdot 412$	0.407	0.402	0.397	0.387	0.379	0.371
$15 \cdot 5$	0.423	0.417	$0 \cdot 411$	0.406	0.401	$0 \cdot 391$	0.382	$0 \cdot 374$
16.0	0.428	0.422	0.416	0.410	0.405	0.395	0.386	$0 \cdot 377$
17.0	0.437	0.431	0.425	0.419	0.413	0.402	$0 \cdot 393$	0384
18.0	0.446	0.439	0.433	0.427	0.421	0.409	0.399	0.389
$19 \cdot 0$	0.455	0.448	0.441	0.434	0.428	0.416	0.405	$0 \cdot 395$
20.0	$0 \cdot 463$	0.456	0.448	$0 \cdot 441$	0.434	$0 \cdot 422$	0.410	0.400
21.0	0.471	0.463	0.455	0.448	0.441	0.428	0.416	0.405
22.0	0.479	$0 \cdot 470$	0.462	0.454	0.447	0.433	0.421	0.409
23.0	0.486	0.477	0.469	0.461	0.453	0.439	0.426	0.414
24.0	0.493	0.484	0.475	0.467	0.459	0.444	0.430	$0 \cdot 418$
25.0	$0 \cdot 500$	0.490	0.481	0.472	0.464	0.449	0.435	0.422
26.0	0.507	0.496	0.487	0.478	0.469	0.453	0.439	0.426
$27 \cdot 0$	0.513	0.502	0.492	0.483	0.474	0.458	0.443	0.429
28.0	0.519	0.508	0.498	0.488	0.479	0.462	0.447	0.433
29.0	0.525	0.514	0.503	0.493	0.484	0.466	0.450	0.436
30.0	0.531	0.519	0.508	$0 \cdot 498$	$0 \cdot 488$	$0 \cdot 470$	0.454	0.439

TABLE 95 AREAS OF GIVEN NUMBERS OF BARS IN cm^{2}

TABLE 96 AREAS OF BARS AT GIVEN SPACINGS
Values in $\mathrm{cm}^{\mathbf{2}}$ per Meter Width

$\underset{\text { cm }}{\text { Spacing }}$	(Bar Diameter, mm											
	$\frac{7}{6}$	8	10	12	14	16	18	20	22	25	28	32
5	$5 \cdot 65$	10.05	15.71	$22 \cdot 62$	30.79	$40 \cdot 21$	50.89	62.83	76.03	$98 \cdot 17$	$123 \cdot 15$	160.85
6	4.71	$8 \cdot 38$	13.09	18.85	25.66	$33 \cdot 51$	42.41	52.36	$63 \cdot 36$	81.81	$102 \cdot 68$	34.04
7	4.04	$7 \cdot 18$	11.22	$16 \cdot 16$	21.99	28.72	36.35	44.88	$54 \cdot 30$	$70 \cdot 12$	87.96	14.89
8	3.53	6.28	9.82	$14 \cdot 14$	19.24	$25 \cdot 13$	31.81	39.27	47.52	61.36	76.9	$100 \cdot 53$
9	$3 \cdot 14$	$5 \cdot 58$	$8 \cdot 73$	12.57	$17 \cdot 10$	$22 \cdot 34$	28.27	34.91	42-24	54.54	$68 \cdot 42$	$89 \cdot 36$
10	2.83	5.03	$7 \cdot 85$	$11 \cdot 31$	$15 \cdot 39$	20-11	25.45	31.42	38.01	49.09	61.57	$80 \cdot 42$
11	$2 \cdot 57$	$4 \cdot 57$	$7 \cdot 14$	$10 \cdot 28$	13.99	18.28	$23 \cdot 13$	28.56	34.56	$44 \cdot 62$	55.98	$73 \cdot 11$
12	$2 \cdot 36$	$4 \cdot 19$	$6 \cdot 54$	9.42	12.83	16.75	21.21	$26 \cdot 18$	31.68	40.91	51.31	67.02
13	$2 \cdot 17$	$3 \cdot 87$	6.04	8.70	11.84	15.47	19.57	$24 \cdot 17$	29.24	37.76	$47 \cdot 37$	61.86
14	2.02	$3 \cdot 59$	$5 \cdot 61$	8.08	11.00	14.36	18.18	22.44	27.15	35.06	$43 \cdot 98$	57.45
15	1.88	3.35	5.24	7.54	10.26	$13 \cdot 40$	16.96	20.94	25.34	32.72	41.05	53.62
16	$1 \cdot 77$	$3 \cdot 14$	4.91	7.07	$9 \cdot 62$	12.57	$15 \cdot 90$	$19 \cdot 63$	23.76	$30 \cdot 68$	$38 \cdot 48$	50.27
17	1.66	2.96	$4 \cdot 62$	6.65	9.05	11.83	14.97	18.48	22.36	28.87	$36 \cdot 22$	$47 \cdot 31$
18	1.57	2.79	$4 \cdot 36$	6.28	$8 \cdot 55$	$11 \cdot 17$	14.44	17.45	21.12	27.27	$24 \cdot 21$	$44 \cdot 68$
19	1.49	2.65	$4 \cdot 13$	$5 \cdot 95$	$8 \cdot 10$	$10 \cdot 58$	$13 \cdot 39$	16.53	20.01	25.84	32-41	$42 \cdot 33$
20	1.41	2.51	3.93	$5 \cdot 65$	7.70	10.05	12.72	15.71	19.01	24.54	30-79	$40 \cdot 21$
21	$1 \cdot 35$	2.39	3.74	$5 \cdot 39$	$7 \cdot 33$	$9 \cdot 57$	$12 \cdot 12$	14.96	$18 \cdot 10$	$23 \cdot 37$	$29 \cdot 32$	$38 \cdot 30$
22	$1 \cdot 28$	2.28	3.57	$5 \cdot 14$	7.00	$9 \cdot 14$	11.57	$4 \cdot 28$	17.28	22.31	27.99	36.56
23	1.23	$2 \cdot 18$	$3 \cdot 41$	4.92	$6 \cdot 69$	8.74	11.06	13.66	16.53	21.34	26.77	34.97
24	$1 \cdot 18$	2.09	$3 \cdot 27$	$4 \cdot 71$	6.41	$8 \cdot 38$	$10 \cdot 60$	13.09	15.84	20.54	25.66	33.51
25	$1 \cdot 13$	2.01	$3 \cdot 14$	4.52	6.16	8.04	10.18	12.57	$15 \cdot 20$	$19 \cdot 63$	24.63	32.17
26	1.09	1.93	3.02	$4 \cdot 35$	$5 \cdot 92$	7.73	$9 \cdot 79$	12.08	14.62	18.88	23.68	30.93
27	1.05	$1 \cdot 86$	$2 \cdot 91$	$4 \cdot 19$	$5 \cdot 70$	$7 \cdot 45$	9.42	11.64	14.08	$18 \cdot 18$	$22 \cdot 81$	29.79
28	1.01	$1 \cdot 79$	2.80	4.04	$5 \cdot 50$	$7 \cdot 18$	9.09	11.22	$13 \cdot 58$	17.53	21.99	28.76
29	0.97	$1 \cdot 73$	2.71	3.90	$5 \cdot 31$	6.93	8.77	10.83	$13 \cdot 11$	16.93	21.23	27.73
30	0.94	$1 \cdot 68$	$2 \cdot 62$	3.77	$5 \cdot 13$	$6 \cdot 70$	8.48	10.47	12.67	16.36	$20 \cdot 52$	26.81
32	$0 \cdot 88$	1.57	$2 \cdot 45$	3.53	$4 \cdot 81$	6.28	7.95	$9 \cdot 82$	11.88	$15 \cdot 34$	$19 \cdot 24$	25.13
34	0.83	$1 \cdot 48$	2.31	$3 \cdot 33$	$4 \cdot 53$	$5 \cdot 91$	7.48	$9 \cdot 24$	11.18	14.44	$18 \cdot 11$	$23 \cdot 65$
36	0.78	$1 \cdot 40$	$2 \cdot 18$	$3 \cdot 14$	$4 \cdot 28$	$5 \cdot 58$	7.07	8.73	10.56	$13 \cdot 63$	$17 \cdot 10$	$22 \cdot 34$
38	0.74	$1 \cdot 32$	2.07	$2 \cdot 98$	4.05	$5 \cdot 29$	$6 \cdot 70$	$8 \cdot 27$	10.00	12.92	$16 \cdot 20$	21.16
40	0.71	$1 \cdot 26$	1.96	$2 \cdot 83$	3.85	5.03	6.36	$7 \cdot 85$	$9 \cdot 50$	12.27	$15 \cdot 39$	$20 \cdot 11$

Table 97 FIXED END MOMENTS FOR PRISMATIC BEAMS

Table 98 DEFLECTION FORMULAE FOR PRISMATIC BEAMS

[^0]: ## Members

 Shri A. K. Banerjee
 Prof Dinesh Mohan
 Dr S. Maudgal
 Dr M. Ramaiah
 Shri T. K. Saran
 Shri T. S. Vedaciri
 Dr H. C. Visvesvaraya
 Shrid. Ajitha Simha

 Metallurgical and Engineering Consultants (India) Limited, Ranchi
 Certral Building Research Institute, Roorkee
 Department of Science and Technology, New Delhi Structural Engineering Research Centre, Madras Bureau of Public Enterprises, New Delhi Central Public Works Department, New Delhi Cement Research Institute of India, New Delhi Indian Standards Institution, New Delhi

[^1]: *The term 'factored moment' means the moment due to characteristic loads multiplied by the appropriate value of partial safety factor γf.

[^2]: .

[^3]: Nors 1 - Zefos indicate inadmissible reinforcement percentage:
 Nort 2 - Har spacings below the dividing line exceed 3 d.

